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> Inductive Logic Programming (ILP) is a new discipline which investigatesthe inductive construction of �rst-order clausal theories from examples andbackground knowledge. We survey the most important theories and meth-ods of this new �eld. Firstly, various problem speci�cations of ILP areformalised in semantic settings for ILP, yielding a \model-theory" for ILP.Secondly, a generic ILP algorithm is presented. Thirdly, the inferencerules and corresponding operators used in ILP are presented, resulting in a\proof-theory" for ILP. Fourthly, since inductive inference does not producestatements which are assured to follow from what is given, inductive infer-ences require an alternative form of justi�cation. This can take the formof either probabilistic support or logical constraints on the hypothesis lan-guage. Information compression techniques used within ILP are presentedwithin a unifying Bayesian approach to con�rmation and corroboration ofhypotheses. Also, di�erent ways to constrain the hypothesis language, orspecify the declarative bias are presented. Fifthly, some advanced topics inILP are addressed. These include aspects of computational learning theoryas applied to ILP, and the issue of predicate invention. Finally, we sur-vey some applications and implementations of ILP. ILP applications fallunder two di�erent categories: �rstly scienti�c discovery and knowledgeacquisition, and secondly programming assistants. <1. IntroductionInductive Logic Programming (ILP) has been de�ned [81] as the intersection ofinductive learning and logic programming. Thus ILP employs techniques fromAddress correspondence toOxford University Computing Laboratory, Wolfson Building, ParksRoad, Oxford, OX1 3QD, UK.Address correspondence toDept. of Computing Science, Katholieke Universiteit Leuven, 200ACelestijnenlaan, B-3001, Heverlee, Belgium.
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630 both machine learning and logic programming.From inductive machine learning, ILP inherits its goal: to develop tools andtechniques to induce hypotheses from observations (examples) and to synthesisenew knowledge from experience. By using computational logic as the representa-tional mechanism for hypotheses and observations, inductive logic programmingcan overcome the two main limitations of classical machine learning techniques,such as the Top-Down-Induction-of-Decision-Tree (TDIDT) family [101]):1. the use of a limited knowledge representation formalism (essentially a propo-sitional logic), and2. di�culties in using substantial background knowledge in the learning pro-cess.The �rst limitation is important because many domains of expertise can only beexpressed in a �rst order logic, or a variant of �rst order logic, and not in a propo-sitional one. One problem in which this is obvious is the domain of logic programsynthesis from examples. Most logic programs cannot be de�ned using only propo-sitional logic. The use of domain knowledge is also crucial because one of the well-established �ndings of arti�cial intelligence is that the use of domain knowledge isessential for achieving intelligent behaviour. Logic o�ers an elegant formalism torepresent knowledge and hence incorporate it in the induction task.From computational logic, inductive logic programming inherits its representa-tional formalism, its semantical orientation and various well-established techniques.In contrast to most other approaches to inductive learning, inductive logic program-ming is interested in properties of inference rules, in convergence of algorithms andin the computational complexity of procedures. Many inductive logic program-ming systems bene�t from using the results of computational logic. Additionalbene�t could potentially be derived from making use of work on termination, typesand modes, knowledge-base updating, algorithmic debugging, abduction, constraintlogic programming, program synthesis and program analysis.Inductive logic programming extends the theory and practice of computationallogic by investigating induction rather than deduction as the basic mode of infer-ence. Whereas present computational logic theory describes deductive inferencefrom logic formulae provided by the user, inductive logic programming theory de-scribes the inductive inference of logic programs from instances and backgroundknowledge. In this manner, ILP may contribute to the practice of logic program-ming, by providing tools that assist logic programmers to develop and verify pro-grams.ILP can be distinguished from traditional investigations of inductive inferencein areas such as grammatical induction and induction of �nite state automata [76,13, 3] by its emphasis on the use of a universal representation. Clearly universalrepresentations promise much wider scope of applicability. Logic programs arearguably much easier to manipulate for a machine learning algorithm than otheruniversal representations which have been investigated, such as Universal TuringMachines programs [14] and LISP programs [133, 12]. This is due to the fact that inpure clausal logic changes can be made to a program by simply adding or deletingeither complete clauses or literals within a clause without worrying about orderinge�ects. Since the semantics of logic programs are so closely allied to their syntax,such changes also have a clear and simple e�ect on the generality of the resultingprogram. In addition, logic programs allow a single representation for examples,
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631background knowledge and hypotheses.In this paper, we provide an introduction to ILP. The introduction focusses onwhat we believe to be the foundations of the �eld. This paper is not a bottom-uppaper based on describing small di�erences between many di�erent systems. It isinstead a top-down synthetic overview of concepts, terminology and methods. Weare not overly concerned with discussing the implementation details of particularsystems and approaches because the di�erences are often quite minor and of notgreat interest to a general audience. We aim instead at providing a conceptualframework for presenting ILP at four levels of description: a semantic level (de�ningthe problem of ILP), a generic ILP algorithm level, a proof-theoretic level (de�ningthe inference rules used in ILP), and a probabilistic semantics of belief (de�ningthe justi�cation of induced hypotheses).The paper is organised as follows. In Section 2, we introduce inductive logicprogramming informally by means of some examples; in Section 3, we formally de-�ne the problem of inductive logic programming at the model-theoretic or semanticlevel; in Section 4, we provide a generic ILP algorithm, in Section 5 we study someinductive inference rules used in ILP, yielding a \proof-theory" for ILP; in Section 6,information compression techniques used within ILP are presented within a unify-ing Bayesian approach to con�rmation and corroboration of hypotheses; in Section7, we survey some methods to constrain the search-space in ILP (syntactic andsemantic bias); in Section 8, the convergence and computationally complexity ofILP (learnability) is investigated; in Section 9, the problem of inventing new pred-icates is addressed; in Section 10 various ILP implementations are discussed andcompared; in Section 11, some applications of ILP in scienti�c discovery and auto-matic programming are summarised; �nally, in Section 12, we conclude. AppendixA contains a list of symbols and notations used throughout this paper.2. General settingInductive inference is a very common form of everyday reasoning. Consider thefollowing examples, which will be used throughout this paper.2.1. Family exampleImagine yourself as learning about the relationships between people in your closefamily circle. You have been told that your grandfather is the father of one ofyour parents, but do not yet know what a parent is. You might have the followingbeliefs. B = 8>><>>: grandfather(X;Y ) father(X;Z); parent(Z; Y )father(henry; jane)  mother(jane; john)  mother(jane; alice)  You are now given the following facts (positive examples) concerning the relation-ships between particular grandfathers and their grandchildren.E+ = � grandfather(henry; john)  grandfather(henry; alice)  
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632 You might be told in addition that the following relationships do not hold (negativeexamples). E� = �  grandfather(john; henry) grandfather(alice; john)Believing B, and faced with the new facts E+ and E� you might guess the followingrelationship. H = parent(X;Y ) mother(X;Y )Note that H is not a consequence of B, and E�. That isB ^E� 6j= 2 (prior satisfiability)However, H allows us to explain E+ relative to B. That isB ^H j= E+ (posterior sufficiency)Note that B and H are consistent with E�. That isB ^H ^E� 6j= 2 (posterior satisfiability)The question arises as to how it is possible to derive (even tentatively) the hypoth-esis H.2.2. Another example: TweetySuppose that you know the following about birds:B = 8>><>>: haswings(X)  bird(X)hasbeak(X) bird(X)bird(X) vulture(X)carnivore(X)  vulture(X)Imagine now that an expedition to the upper Za�ire basin comes across a creature,which we shall call for convenience \Tweety". The expedition leader telegraphs youto let you know that Tweety has wings and a beak. This could be represented asthe following logic program E+.E+ = � haswings(tweety)  hasbeak(tweety)  Even without any negative examples it would not take a very inspired ornithologistwith belief set B to hazard the guess \Tweety is a bird". This can be written asH = bird(tweety)  This might be seen by our ornithologist as a working hypothesis about Tweety. Itcould clearly be refuted if further evidence revealed Tweety to be made of plastic
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633(though this would require a more sophisticated belief set B0). Note that, as in thegrandfather example, H allows us to explain E relative to B. That isB ^H j= E+Note that the ornithologist would be unlikely to entertain the more speculativehypothesis \vulture(tweety)", even though this could also be used to explain allthe evidence. H0 = vulture(tweety)  But how do we know from B and E+ that H 0 is more speculative than H?2.3. Sorting exampleInductive inference can also be viewed as a form of program synthesis. Imaginethat a learning program is to be taught the logic program for \quick-sort". Thefollowing de�nitions are provided as background knowledge.B = 8>>>><>>>>: part(X; []; []; []) part(X; [Y jT ]; [Y jS1]; S2) Y =< X; partition(X;T; S1; S2)part(X; [Y jT ]; S1; [Y jS2]) Y > X; part(X;T; S1; S2)app([]; L; L) app([XjT ]; L; [XjR]) app(T; L;R)The program is then provided with a set of positive ground examples of quick-sort,such as E+ = 8>><>>: qsort([]; []) qsort([0]; [0]) qsort([1; 0]; [0; 1]) : : :together with some negative examples such asE� = 8<:  qsort([1; 0]; [1; 0]) qsort([0]; []): : :In this case we might hope that the algorithm would, given a su�cient number ofexamples, suggest the following clauses for \quick-sort".H = 8>>>><>>>>: qsort([]; []) qsort([XjT ]; S) part(X;T; L1; L2);qsort(L1; S1);qsort(L2; S2);app(S1; [XjS2]; S)Indeed several ILP systems such as Golem [90] and FOIL [105] can learn this def-inition of quick-sort from as few as 6 or 10 examples. Although much backgroundknowledge is required to learn quick-sort, the mentioned ILP systems are able toselect the correct hypothesis from a huge space of possible hypotheses.
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634 In some parts of the paper, we will also employ background theory B0. From B0and some examples it is easy to induce a permutation sort.B0 = 8>>>>>>>><>>>>>>>>: perm([]; []) perm(L; [XjP ]) del(X;L;L1); perm(L1; P )del(X; [XjT ]; T ) del(X; [Y jT ]; [Y jT1]) del(X;T; T1)sorted([]) sorted([X]) sorted([X;Y jT ]) X � Y; sorted([Y jT ])2.4. Inductive Inference and the Philosophy of ScienceThe form of reasoning demonstrated in the last three examples is known as inductiveinference and is very commonwithin the natural sciences. Aristotle �rst describes itin his \Posterior Analytics". Francis Bacon, in discussing the empiricism of the newnatural sciences in the 17th century (in NovumOrganum) gave numerous examplesof inductive inference as a paradigm for scienti�c method.However, despite the e�orts of philosophers such as Hume, Mill, Pierce, Popperand Carnap, the foundations of inductive reasoning are still much less clear thanthose of deductive mathematical logic. Since the 1970's several researchers fromwithin Computer Science have attempted, with varying degrees of success, to �nd alogical basis for inductive inference. These researchers have included Plotkin [100],Shapiro [125, 126] and the new school of Inductive Logic Programming [81, 83, 107].In this paper we will describe the theoretical basis of Inductive Logic Program-ming in the framework of �rst-order predicate calculus, Bayesian statistics andalgorithmic complexity theory. Although the examples used generally only involvede�nite clauses, most results extend quite naturally to full clausal logic (see Sec-tion 3). The theory of ILP will be related to implementations and applicationsthroughout the paper.2.5. Hypothesis formation and justi�cationFrom the examples in Sections 2.1, 2.2 and 2.3 it is clear that the process of hypoth-esis formation (abduction) and hypothesis justi�cation need further clari�cation.In this paper it will be assumed thatInduction = Abduction + Justi�cationAbduction. According to the philosopher Pierce, abduction is the process ofhypothesis formation. This term is used within Logic Programming (eg.[52, 19, 51]) to denote a form of non-monotonic reasoning (see also Section11.2.5). Pierce describes the basis of abduction as follows: given E andE  H, hypothesise H. A more extensive de�nition appropriate for ILPwill be given in Section 3.Justi�cation. The degree of belief ascribed to an hypothesis given a certainamount of evidence. Followers of Carnap talk of the degree of \con�rma-tion", claiming that no absolute justi�cation is possible. On the other hand afollower of Popper would not see there as being a problem of justi�cation, but
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635rather a problem of deciding between competing hypotheses. They wouldtherefore rather talk of corroboration. The term justi�cation is used here tointroduce the whole nexus of related problems. The problem of justi�cationis discussed in detail in Section 6.In fact scienti�c theory formation involves much more than the two elements ofinduction above. Facts must be gathered, experiments must be planned and al-ternative theories must be tested out. Abduction and justi�cation can be seen ascentral components of this process. Several ILP applications (Section 11) have in-volved the discovery of new pieces of scienti�c knowledge from empirical evidence.ILP potentially also contributes to experimentation and testing of hypotheses [106].3. Model-Theory of ILPThe logical elements (the semantics) involved in inductive inference will now bedescribed, together with the relationships which should hold between them. Wedescribe two di�erent semantics for ILP: the normal and non-monotonic semantics,and we also discuss the de�nite semantics, which is � roughly speaking � a specialcase of the normal semantics.Throughout the paper, we will employ the notion of syntactic bias (see Section7). The syntactic bias de�nes the set of well-formed hypotheses and thus constitutesa parameter of any ILP task. Because the use of a syntactic bias is omni-presentin ILP, we will not always write explicitly that we assume the hypotheses are well-formed with regard to this bias.3.1. Normal semanticsHere, we will use a general setting for ILP and allow examples, background theoryand hypotheses to be any (well-formed) logical formula.The problem of inductive inference is as follows. Given is background (prior)knowledge B and evidence E. The evidence E = E+ ^ E� consists of positiveevidence E+ and negative evidence E�. The aim is then to �nd a hypothesis Hsuch that the following conditions hold.De�nition3.1. (normal semantics)Prior Satis�ability. B ^E� 6j= 2Posterior Satis�ability. B ^H ^E� 6j= 2Prior Necessity. B 6j= E+Posterior Su�ciency. B ^H j= E+The Su�ciency criterion is sometimes named completeness with regard to posi-tive evidence and the Posterior Satis�ability criterion is also known as consistencywith the negative evidence.In most ILP systems background theory and hypotheses are restricted to beingde�nite. This de�nite setting is simpler than the general setting because a de�niteclause theory T has a unique minimal Herbrand model M+(T ), and any logical
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636 formulae is either true or false in the minimal model. This setting is formalised inthe de�nite setting of De�nition 2.De�nition3.2. (de�nite semantics)Prior Satis�ability. all e 2 E� are false inM+(B)Posterior Satis�ability. all e 2 E� are false inM+(B ^H)Prior Necessity. some e 2 E+ are false inM+(B)Posterior Su�ciency. all e 2 E+ are true inM+(B ^H)The special case of the de�nite semantics, where the evidence is restricted totrue and false ground facts (examples), will be called the example setting. Noticethat the example setting is equivalent to the normal semantics, where B and H arede�nite clauses and E is a set of ground unit clauses. The example setting is themain setting of ILP. It is employed by the large majority of ILP systems; it willalso be the most important setting in this paper. The example setting is the oneillustrated in Section 2.The reason for allowing other evidence than examples in the de�nite semantics, isthat it is often useful to allow general clauses as evidence (cf. [110, 107] and Section11.2). Clausal evidence usually captures more knowledge than factual evidenceconsisting of only ground facts. For instance, in the family example of Section 2.1,the �rst positive example could begrandfather(henry; john)  father(henry; jane);mother(jane; john)and the (positive) evidence could also include  grandfather(X,X), stating thatno-one is their own grandfather. Analogously, in the sorting example of Section2.3, one could use sorted(Y)  quicksort(X,Y) and quicksort(X,X)  sorted(X) aspositive evidence when the de�nition of sorted is in the background theory. The useof clausal evidence provides the learner with an incomplete or partial speci�cation ofthe sorting predicate. This constrains the space of acceptable hypotheses. Positiveevidence has to be true in the minimalmodel of the hypothesis and theory, whereasnegative evidence has to be false in this setting.3.2. The non-monotonic semanticsA non-monotonic1 setting for ILP was introduced by Nicolas Helft [48] and Flach[39]; some variants were later considered by [7, 113, 114]. Here, we de�ne a variantrelated to the normal setting and [113, 114].In the non-monotonic setting of ILP, the background theory is a set of de�niteclauses, the evidence is empty, and the hypotheses are sets of general clauses ex-pressible using the same alphabet as the background theory. The reason that theevidence is empty is that the positive evidence is considered part of the backgroundtheory and the negative evidence is derived implicitly, by making a kind of closedworld assumption (realised by taking the minimal Herbrand model).1The term \non-monotonic"was introduced by Helft in order to make a link with other forms ofnon-monotonic reasoning, because of the relation to the closed world assumption and its variants.
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637In the non-monotonic setting, the following conditions should hold for H and B:De�nition3.3. (non-monotonic semantics)Validity: all h 2 H are true inM+(B)Completeness: if general clause g is true inM+(B) then H j= gMinimality: there is no proper subset G of H which is valid and completeThe Validity requirement assures that all clauses belonging to a hypothesis holdin the database B, i.e. that they are true properties of the data. The Complete-ness requirement states that all information that is valid in the database shouldbe encoded in the hypothesis. This requirement should also be understood withregard to a given syntactic bias, which determines the set of well-formed hypothe-ses (see Section 7). The Minimality requirement aims at deriving non redundanthypotheses.To illustrate the non-monotonic setting, consider the following example (takenfrom [113]) and assume that a hypothesis is well-formed if it consists of clausescontaining a single variable:B =8>><>>: male(luc)  female(lieve)  human(lieve)  human(luc) A possible solution is then:H = 8>><>>:  female(X);male(X)human(X)  male(X)human(X)  female(X)female(X);male(X)  human(X)To explain the di�erences between the example setting and the non-monotonicsetting, let us consider B1 = � bird(tweety)  bird(oliver)  E+1 = flies(tweety)  An acceptable hypothesis H1 in the example setting would be 
ies(X)  bird(X).Notice that this clause realises an inductive leap as 
ies(oliver) is true inM+(B1^H1). On the other hand, H1 is not a solution in the non-monotonic setting as thereexists a substitution � = fX  oliverg which makes the clause false (non-valid)inM+(B1 ^E+1 ). This demonstrates that the non-monotonic setting hypothesisesonly properties that hold in the database. Therefore the non-monotonic seman-tics realises induction by deduction. The induction principle of the non-monotonicsetting states that the hypothesis H, which is, in a sense, deduced from the set of ob-served examples E and the background theory B (using a kind of closed world andclosed domain assumption), holds for all possible sets of examples. This producesgeneralisation beyond the observations. As a consequence, properties derived in
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638 the non-monotonic setting are more conservative than those derived in the normalsetting.The di�erences between the two settings are related to the closed world assump-tion. In most applications of the example setting in ILP [58, 91], only the set ofpositive examples is speci�ed and the set of negative examples is derived from thisby applying the closed world assumption, i.e. by taking E� = M�(B ^ E+):2In our illustration, this results in E�1 = f
ies(oliver)g. Given this modi�ed E�1 ,hypothesis H1 cannot contribute to a solution in the normal setting. If on the otherhand, we ignore the di�erence between background theory and examples and de�neB2 = ;, and E+2 = B1 ^ E+1 and E�2 = E�1 , then clause H2 can also be part of asolution in the normal setting. Intuitively, this shows that solutions to problems inthe normal setting, where the closed world assumption is applied, are also valid inthe non-monotonic setting.Theorem 1. Any hypothesis H posterior su�cient and posterior satis�able for abackground theory B, and examples E such that E� =M�(B ^E+), is valid inthe non-monotonic setting if BP = B(B ^H) = B(B ^E+).Proof. We prove that under these assumptionsM+(B ^E+) =M+(B ^H).De�ne BP as B(B ^H)1) M+(B ^ E+) � M+(B ^ H) because E+ is true in M+(B ^ H) (posteriorsu�ciency) and B is true inM+(B ^H)so E+ ^B is true inM+(B ^H)soM+(E+ ^B) �M+(B ^H)2)M+(B ^H) �M+(B ^E+) because B ^H ^E� 6j= 2 (posterior satis�ability)soM+(B ^H) \M+(E�) = ;soM+(B ^H) \M�(B ^E+) = ;soM+(B ^H) � BP �M�(B ^E+)soM+(B ^H) �M+(B ^E+) 2The opposite does not always hold and this reveals the other main di�erencebetween the two settings. In the normal setting, the induced hypothesis can alwaysbe used to replace the examples because theory and hypothesis entail the observedexamples (and possibly other examples as well). In the non-monotonic setting,the hypothesis consists of a set of properties holding for the example set. Whenusing a language bias (cf. Section 7), which further restricts the (syntactic) formof clauses, there is no explicit guarantee concerning prediction. For instance inthe non-monotonic setting (with a language bias restricting hypotheses to singleclauses), hypothesis H2 is a solution for B1 and E+1 . Nevertheless, it cannot beused to predict the example in E+1 .The non-monotonic semantics do not require the closed domain assumption tohold for the background theory and evidence. Indeed, for example, in a medicalapplication, all patients should be completely speci�ed, which means that all theirsymptoms and diseases should be fully described. Notice that this is di�erent fromrequiring that the complete universe is described (i.e. all possible patients).Although the non-monotonic and the normal semantics appear to be quite dif-2M�(T ) = ff : f 2 (B(T )�M+(T ))g, i.e. the complement of the minimal Herbrand modelof T , where f denotes the negation of f , where T is a de�nite clause program, and where B(T ) isthe Herbrand base of T .
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639ferent, it will turn out that some ILP techniques, such as re�nement, apply to bothframeworks. Also, the two semantics allow for a di�erent kind of application, seealso Section 11.2.4. A generic ILP algorithmIn this section, we present a generic ILP algorithm based on the GENCOL modelof [112]. The generic ILP algorithm makes abstraction of speci�c ILP algorithmsand aims at providing the reader with a general understanding of ILP algorithmsand implementations.A �rst key observation leading towards a generic ILP algorithm, is to regardILP as a search problem. This view of ILP follows immediately from the model-theory of ILP presented in Section 3. Indeed, in ILP there is a space of candidatesolutions, i.e. the set of \well-formed" hypotheses (which constitutes the syntacticbias or the language bias of the problem, cf. Section 7), and an acceptance criterioncharacterizing solutions to an ILP problem. Following general arti�cial intelligenceprinciples, one can solve ILP using a naive generate and test algorithm. Thisapproach is known in the literature as the enumeration algorithm. However, as forother arti�cial intelligence problems, the enumeration algorithm is computationallytoo expensive to be of practical interest. Therefore, the question arises of how thespace of possible solutions can be structured in order to allow for pruning of thesearch. In concept-learning and ILP [72, 125, 74, 112], the search space is typicallystructured by means of the dual notions of generalisation and specialisation.In our view, generalisation corresponds to induction, and specialisation to de-duction, implying that induction is viewed here as the inverse of deduction3.De�nition4.1. A hypothesis G is more general than a hypothesis S if and onlyif G j= S. S is also said to be more speci�c than G.In search algorithms, the notions of generalisation and specialisation are incor-porated using inductive and deductive inference rules:De�nition4.2. A deductive inference rule r 2 R maps a conjunction of clausesG onto a conjunction of clauses S such that G j= S; r is called a specialisation rule.As an example of deductive inference rule, consider resolution. Also, dropping aclause from a hypothesis realises specialisation.De�nition4.3. An inductive inference rule r 2 R maps a conjunction of clausesS onto a conjunction of clauses G such that G j= S; r is called a generalisation rule.An example of an inductive inference rule is Absorption:3In this paper, we stick to this � probably controversial � view because it o�ers a clear andoperational framework for induction. This contrasts with alternative frameworks, which mainlyrest on philosophical intuitions and have less clear logical formalisations.
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640 Absorption: p A;B q Ap q; B q AIn the rule of Absorption the conclusion entails the condition. Notice that applyingthe rule of Absorption in the reverse direction, i.e. applying resolution, is a deduc-tive inference rule. Other inductive inference rules generalise by adding a clause toa hypothesis, or by dropping a negative literal from a clause. Inductive inferencerules, such as Absorption, are clearly not sound. The fact that they cannot beapplied in an unrestricted fashion is against the spirit of logical inference.This soundness problem can be circumvented by associating each hypothesisedconclusion H with a label L = p(HjB ^ E) where L is the probability that Hholds given that the background knowledge B and evidence E hold. A Bayesianapproach to computing this conditional probability is given in Section 6. Assumingthe subjective assignment of probabilities to be consistent, labelled rules of inductiveinference are as sound as deductive inference. The conclusions are simply claimedto hold in a certain proportion of interpretations4.Generalisation and specialisation form the basis for pruning the search space.This is because :� when B ^ H 6j= e, where B is the background theory, H is the hypothesisand e is positive evidence, then none of the specialisations H 0 of H willimply the evidence. Each such hypothesis will be assigned a probabilitylabel p(H 0jB ^E) = 0. They can therefore be pruned from the search.� when B^H^e j= 2, where B is the background theory, H is the hypothesisand e is negative evidence, then all generalisations H 0 of H will also beinconsistent with B ^E. These will again have p(H 0jB ^E) = 0.For example, in the family example of Section 2.1, one should not consider special-isations of B as they will not imply the positive examples. On the other hand, inthe sorting example of Section 2.3, one should not consider generalisations of thehypothesis qsort(X,X)  as it is inconsistent with some negative examples.Given the above key ideas of ILP as search, inference rules and labeled hypothe-ses, a generic ILP system can now be de�ned:Algorithm 1.QH := InitializerepeatDelete H from QHChoose the inference rules r1; :::; rk 2 R to be applied to HApply the rules r1; :::; rk to H to yield H1;H2; :::;HnAdd H1; :::;Hn to QHPrune QHuntil stop-criterion(QH) satis�edThe algorithm works as follows. It keeps track of a queue of candidate hypothe-ses QH. It repeatedly deletes a hypothesis H from the queue and expands thathypotheses using inference rules. The expanded hypotheses are then added to the4In the learning literature assignments of degrees of belief are usually more ad hoc thanin Section 6 and are known as \inductive bias". Inductive bias is often taken to be a binary(accept/reject) assignment. However, \reject" can simply be viewed as a prior probability of zero.
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641queue of hypotheses QH, which may be pruned to discard unpromising hypothe-ses from further consideration. This process continues until the stop-criterion issatis�ed.In the above algorithm, the generic procedures are type-written. The algorithmhas the following generic parameters:� Initialize denotes the hypotheses started from.� R denotes the set of inference rules applied.� Delete in
uences the search strategy. Using di�erent instantiations of thisprocedure, one can realise a depth-�rst (Delete = LIFO), breadth-�rst(Delete = FIFO) or best-�rst algorithm.� Choose determines the inference rules to be applied on the hypothesis H.� Prune determines which candidate hypotheses are to be deleted from thequeue. This is usually realized using the labels (probabilities) of the hy-potheses on QH or relying on the user (employing an \oracle"). CombiningDelete with Prune it is easy to obtain advanced search strategies such ashill-climbing, beam-search, best-�rst, etc.� The Stop-criterion states the conditions under which the algorithm stops.Some frequently employed criteria require that a solution be found, or thatit is unlikely that an adequate hypothesis can be obtained from the currentqueue.Notice that the above algorithm searches for solutions at the hypotheses level ratherthan at the clause level, as done by several algorithms such as FOIL [105] andGOLEM [90]. We take the more general approach here.As an example of an instantiation of this algorithm consider the DUCE andCIGOL algorithms of [79, 89], which realize a hill-climbing search strategy. At thetime Delete is invoked, the queue always contains a single hypothesis. Initiallythis hypothesis is B ^ E+. The inference rules are based on inverting resolution(see Section 5.4 for more details) and include the Absorption rule. In the Pruningphase, only the best hypothesis is kept, the others are discarded from the queueQH. Pruning is realized using a mixture of the minimal description length principle(see Section 6) and relying on the user (the \oracle") to decide whether a clause istrue in the intended model or not.The DUCE and CIGOL systems are representatives of the class of \speci�c-to-general" systems. These systems start from the examples and background knowl-edge, and repeatedly generalize their hypothesis by applying inductive inferencerules. During the search they take care that the hypothesis remains satis�able(i.e. does not imply negative examples). Other representatives of this class includeITOU [121], CLINT [107], MARVIN [124], GOLEM [90] and PGA [20].The dual class of systems, which searches \general-to-speci�c", starts with themost general hypothesis (i.e. the inconsistent clause 2) and repeatedly specializesthe hypothesis by applying deductive inference rules in order to remove incon-sistencies with the negative examples. During the search care is taken that thehypotheses remain su�cient with regard to the positive evidence. Systems of thistype include FOIL [105], CLAUDIEN [113], MIS [125], MOBAL [54], GRENDEL[24] and ML-SMART [9].The same search strategies are also valid in the non-monotonic setting (cf. [47,113]). Indeed, in the non-monotonic setting one is interested in the boundary ofmaximally general hypotheses, true in the minimal model. Above the boundary,
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642 the hypotheses will be false, and below that boundary they will either be false ornon-maximal. To locate the boundary, one can search again speci�c-to-general orgeneral-to-speci�c.In the next two sections of this paper, we will give a detailed overview of thedi�erent types of inductive inference rules applied in ILP (the proof-theory of ILP,see Section 5), and provide a unifying framework that makes abstraction of speci�clabelling schemes employed in ILP (the probabilistic semantics of ILP, see Section6). These two aspects lie at the heart of ILP. Other implementation aspects (suchas search-strategy) usually follow from these two using general arti�cial intelligenceprinciples.5. Proof-Theory of ILPIn this section, we give a detailed overview of di�erent frameworks for inductiveinference rules. Remember from Section 4 that induction was viewed as the inverseof deduction. Given the formulae B ^H j= E+, deriving E+ from B ^H is deduc-tion, and deriving H from B and E+ is induction. Therefore inductive inferencerules can be obtained by inverting deductive ones. Since this \inverting deduction"paradigm can be studied under various assumptions, corresponding to di�erent as-sumptions about the deductive rule for j= and the format of background theoryB and evidence E+, di�erent models of inductive inference are obtained. In thesimplest model, �-subsumption (see Section 5.2), the background knowledge is sup-posed to be empty, and the deductive inference rule corresponds to �-subsumptionamong single clauses. Since the deductive inference rule based on �-subsumption isincomplete with regard to implication among clauses, extensions of inductive infer-ence under �-subsumption have been recently studied under the header \invertingimplication" (see Section 5.5). Extensions of �-subsumption that take into accountbackground knowledge are studied in Section 5.3. Finally, the most attractive butmost complicated framework for inductive inference is studied in Section 5.4. Thisframework takes into account background knowledge and aims at inverting theresolution principle, the best-known deductive inference rule.Before going into details about these di�erent frameworks, we discuss the dif-ference between inference rules and inference operators, which is important whensearching the space of hypotheses.5.1. Rules of inductive inference and operatorsRecall from Section 4 that inference rules basically state what can be inferredfrom what. A well-known problem in arti�cial intelligence is that the unrestrictedapplication of inference rules results in combinatorial explosions. To control theapplication of inference rules, arti�cial intelligence employs \operators" that expanda given node in the search tree into a set of successor nodes in the search. Thistogether with the above properties of generalisation and specialisation discussedearlier motivates the introduction of specialisation and generalisation operators(see also [112]):De�nition5.1. A specialisation operator maps a conjunction of clauses G ontoa set of maximal specialisations of S. A maximal specialisation S of G is a special-
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643isation of G such that G is not a specialisation of S, and there is no specialisationS0 of G such that S is a specialisation of S0.De�nition5.2. A generalisation operator maps a conjunction of clauses S ontoa set of minimal generalisations of S. A minimal generalisation G of S is a general-isation of S such that S is not a generalisation of G, and there is no generalisationG0 of S such that G is a generalisation of G0.In the spirit of restricting the application of inference rules, one usually imposesfurther conditions on the operators. Such conditions (see also below) require forinstance that the generated hypotheses satisfy the language bias, that the operatorsbe complete (generate all clauses in the language), etc.5.2. �-subsumptionWe start discussing the simplest model of deduction for ILP: �-subsumption asintroduced by Plotkin5.De�nition5.3. ([99, 100]) A clause c1 �-subsumes a clause c2 if and only if thereexists a substitution � such that c1� � c2. c1 is a generalisation of c2 (and c2 aspecialisation of c1) under �-subsumption.In this de�nition, clauses are seen as sets of (positive and negative) literals.The �-subsumption inductive inference rule is thus:�-subsumption: c2c1 where c1� � c2.For example, father(X,Y)  parent(X,Y), male(X) �-subsumes father(jef,paul)  parent(jef,paul), parent(jef,ann), male(jef), female(ann) with � = fX = jef, Y =anng.5.2.1. Properties Some properties of �-subsumption include (see [100, 99]):Implication. If c1 �-subsumes c2 then c1 j= c2. The opposite does not holdfor self-recursive clauses: let c1 = p(f(X))  p(X); c2 = p(f(f(Y )))  p(Y ); c1 j= c2 but c1 does not �-subsume c2. Therefore deduction using �-subsumption is not equivalent to implication among clauses, see also Section5.5.In�nite Descending Chains. There exist in�nite descending chains,e.g. h(X1; X2)  h(X1; X2)  p(X1; X2)h(X1; X2)  p(X1; X2),p(X2; X3)h(X1; X2)  p(X1; X2),p(X2; X3),p(X3; X4)...This series is bounded from below by h(X,X)  p(X,X).5A simpli�ed form of �-subsumption has been studied by Steven Vere [142].
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644 Equivalence. There exist di�erent clauses that are equivalent under �-subsumption,e.g. parent(X,Y)  mother(X,Y), mother(X,Z) �-subsumes parent(X,Y) mother(X,Y) and vice versa. Because two clauses equivalent under �-subsumption are also logically equivalent (implication), ILP systems shouldgenerate at most one clause of each equivalence class. For an extended dis-cussion of equivalence see [69].Reduction. To get around this problem, Plotkin de�ned equivalence classes ofclauses, and showed that there is a unique representative (up to variablerenamings) of each clause, which he named the reduced clause. The reducedclause r of a clause c is a minimal subset of literals of c such that r isequivalent to c. An algorithm to reduce clauses follows from this. ILPsystems can get around the problem of equivalent clauses when workingwith reduced clauses only.Lattice. The set of reduced clauses form a lattice, i.e. any two clauses haveunique lub (the least general generalisation � lgg, see also below) and anytwo clauses have a unique glb.5.2.2. Operators Let us �rst discuss specialisation under �-subsumption. Shapiro[125] introduced the notion of a re�nement operator � for clauses, which correspondsto our notion of a specialisation rule under �-subsumption with the restriction thatG and S contain a single clause. Re�nement operators basically employ two oper-ations on a clause:1. apply a substitution � to the clause,2. add a literal (or a set of literals) to the clause.There are several issues in designing re�nement operators. In the next de�nition,we assume a speci�c language bias L is used (see Section 7). Without loss ofgenerality, we assume L has a most general element >.De�nition5.4. (properties of re�nement operators)Global completeness. A re�nement operator � (with transitive closure ��) isglobally complete for a language L if and only if ��(>) = L, where > is themost general element in L.Local completeness. A re�nement operator � (with transitive closure ��) is lo-cally complete for a language L if and only if 8c 2 L : �(c) = fc0 2 L j c0 isa maximal specialisation of cg.Optimality. A re�nement operator � (with transitive closure ��) is optimal for alanguage L if and only if 8c; c1; c2 2 L : c 2 ��(c1) and c 2 ��(c2) ! c1 2��(c2) or c2 2 ��(c1).First, for reasons discussed above, it is desirable that only reduced clauses aregenerated by the re�nement operators; such a re�nement operator for full clausallogic was recently developed by Patrick van der Laag [61]. Secondly, to considerall hypotheses, operators should be globally complete (preferably, for a languagecontaining only reduced clauses). Thirdly, if a heuristic general-to-speci�c searchstrategy (such as hill climbing in FOIL [105]) is employed, the operator should
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645be locally complete. If the operator is not locally complete, not all successors ofa node (hypothesis) in the search space are considered. On the other hand, if acomplete search strategy is used (such as breadth-�rst [125] or depth �rst iterativedeepening [113]), it is desirable that the operator be optimal, because they generateeach candidate clause exactly once. Non-optimal re�nement operators, such as inShapiro's MIS [125], generate all candidate clauses more than once, getting trappedin recomputing the same things again and again. Recently, an optimal re�nementoperator for full clausal logic was developed by Wim Van Laer [141] for use in thenon-monotonic setting of CLAUDIEN [113].The de�nitions of the properties of generalisation operators (for �-subsumptionand single clauses) can be derived from those of re�nement operators. Neither alocally nor a globally complete generalisation rule for full clausal logic (and also def-inite clause logic) exists because of the in�nite descending chains. Indeed, withoutadditional assumptions about the language bias, the most speci�c generalisationof h(X,X)  p(X,X) under � subsumption contains an in�nite number of literals.Generalisation operators thus depend very much on the language bias employed.Therefore we do not discuss them any further here.Although generalisation operators under �-subsumption for single clauses under�-subsumption do not exist for full clausal logic, a generalisation rule that startsfrom pairs of clauses does exist. This is the well-known least general generalisationrule of Plotkin [99], which computes the greatest lower bound of the two inputclauses under �-subsumption. To compute the lgg of two clauses, consider the fol-lowing. The lgg of the terms f(s1; :::; sn) and f(t1; :::; tn) is f(lgg(s1 ; t1); :::; lgg(sn; tn)).The lgg of the terms f(s1; :::; sn) and g(t1; :::; tm) where f 6= g is the variable v wherev represents this pair of terms throughout. The lgg of two atoms p(s1; :::; sn) andp(t1; :::; tn) is p(lgg(s1; t1); :::; lgg(sn; tn)), the lgg being unde�ned when the signor the predicate symbols are unequal. Finally, the lgg of two clauses c1 and c2 isthen flgg(l1; l2) j l1 2 c1 and l2 2 c2g. For example, the lgg of father(tom,ann)  parent(tom,ann), male(tom), female(ann) and father(jef,paul)  parent(jef,paul),male(jef), male(paul) is father(X,Y)  parent(X,Y), male(X), male(Z).5.3. Relative subsumptionPlotkin [100] extended the notion of �-subsumption to that of relative subsumptionas follows. First he de�nes c-derivations, which de�nes the deductive inference rule,i.e. the way ` is implemented.De�nition5.5. A resolution-based derivation D of the clause c from the con-junction of clauses T is called a c-derivation if and only each clause in T appearsat most once in D.Plotkin then de�nes relative subsumption as follows.De�nition5.6. The conjunction of clauses T relatively subsumes the clause c ifand only if there exists a c-derivation of a clause d from T such that d �-subsumesc. Like �-subsumption, it is straightforward to de�ne relatively reduced clausesusing a straightforward de�nition of relative clause equivalence. Relative subsump-
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646 tion forms a lattice over relatively reduced clauses. Plotkin de�nes the relative leastgeneral generalisation (rlgg) as follows.De�nition5.7. The least general generalisation of clauses c and d relative to Tis the lub of c and d within the relative subsumption ordering.Plotkin shows that the rlgg of two clauses is not necessarily �nite. However,under the language bias of ij-determinacy introduced in [90], a unique, �nite rlggcan be constructed.Buntine [21] de�ned a special case of relative subsumption which he called gener-alised subsumption. Generalised subsumption is only applicable to de�nite clauses.5.4. Inverting ResolutionAs stated in Section 5.1 inductive inference rules can be viewed as the inverse ofdeductive rules of inference. Since the deductive rule of resolution is complete fordeduction an inverse of resolution should be complete for induction. This idea of\inverse resolution" was �rst introduced for �rst-order logic in [89]. Several authorshave expanded on these ideas [144, 49, 121, 136]. Four rules of inverse resolutionwere introduced in [79].Absorption: q A p A;Bq A p q; BIdenti�cation: p A;B p A; qq B p A; qIntra-construction: p A;B p A;Cq B p A; q q CInter-construction: p A;B q A;Cp r; B r  A q r; CIn these rules lower-case letters are atoms and upper-case letters are conjunctionsof atoms. Both Absorption and Identi�cation invert a single resolution step. Thisis shown diagrammatically in Figure 1 as a `V' with the two premises on the baseand one of the arms. The new clause in the conclusion is then the clause found onthe other arm of the V. For this reason Absorption and Identi�cation were calledcollectively V-operators.The rules of Inter- and Intra-construction introduce a new predicate symbol.Inductive inference rules which introduce new predicates are said to carry out\predicate invention" (see Section 9). When constructing logic programs such as\insertion sort", ILP systems such as CIGOL [89] use Intra-construction to intro-duce a new predicate \insert". The new predicate can then be generalised usinga V-operator. Diagrammatically (see Figure 2) the construction operators can beshown as two linked V's, or a W, each respresenting a resolution. The premises areplaced at the two bases of the W and the three conclusions at the top of the W.One of the clauses is shared in both resolutions. Intra- and Inter-construction are
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q      A p      q, B

p       A, BFigure 1. Absorption as a V-operator
p       A, B p       A, C

q      B p      A, q q      C

Figure 2. Intra-construction as a W-operatorcollectively called W-operators.The V and W operators have most speci�c forms (see De�nition 2) as shownbelow (see also [81]).Absorption#: q  A p A;Bq  A p q; A;BIdenti�cation#: p A;B p A; qq  A;B p A; qIntra-construction#: p A;B p A;Cq  A;B p A; q q A;CInter-construction#: p A;B q A;Cp r; A;B r A q r; A;CNote that in this form the V-operators realise both generalisation and speciali-sation since the conclusions entail the premises. Use of most speci�c operators is
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648 usually implemented [122, 90] by having a two stage operation. In the �rst phase,inverse resolution operators are applied to examples (this is called saturation in[122]). In the second phase clauses are reduced by generalisation through the �-subsumption lattice (see Section 5.2).In [81] it was shown that the lgg of two examples e1 and e2 saturated relative tobackground knowledge B is equivalent to the rlgg of e1 and e2 relative to B. Thisresult established a relationship between generalisations based on subsumption andthose based on inverse resolution.5.4.1. Matching subclauses Just as resolution requires uni�cation to match terms,inverse resolution operators require a matching operation. In [122] all clauses, in-cluding the examples are \
attened". This involves introducing a new (n+1)-arypredicate for every n-ary function symbol. Thus the clause member(a; [a; b])  becomes member(U; V ) a(U ); dot(V; U;X); dot(X;Y; Z); b(Y ); nil(Z):Each new predicate symbol is then separately de�ned. For instancedot([XjY ]; X; Y ) After 
attening the problem of matching clauses when applying the inverse reso-lution operators reduces to one-sided matching of clause bodies. In [81] saturationusing most speci�c operations is shown to be complete with respect to Plotkin'sc-derivations (see Section 6). This kind of completeness result was demonstrated in-dependently in [121]. However, c-derivations do not cover all cases in which B j= c.The latter problem is known as inverting implication.5.5. Inverting implicationPlotkin [100] was the �rst to show that �-subsumption and implication betweenclauses are not equivalent. The di�erence between the two is important since almostall inductive algorithms which generalise �rst-order clauses invert �-subsumptionrather than implication. This inevitably leads to a form of incompleteness in thesealgorithms. In this section methods of constructing the inverse implicants of clausesare explored. In Section 5.5.4 it is shown how these methods can be extended to theproblem of inverting implication in the presence of background knowledge. Firstthe di�erence between Plotkin's �-subsumption and implication between clauseswill be reviewed.Remember from Section 5.2, that whenever clause c �-subsumes clause d it alsoimplies d. However the converse does not hold. For instance Plotkin shows thatwith clauses c = p(f(X))  p(X)d = p(f(f(X)))  p(X)c implies d, since d is simply c self-resolved. However c does not �-subsume d. Indiscussing this problem Niblett [93] proves various general results. In particularhe shows that there is not always a unique least generalisation under implication
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649of an arbitrary pair of clauses. For instance, the clause d above and the clause d0= p(f(f(f(X))))  p(X) have both c and the clause p(f(X))  p(Y ) as leastgeneralisations. Although Niblett claims that implication between Horn clauses isdecidable, this has since been shown to be false by Marcinkowski and Pacholski[70].Gottlob [42] also proves a number of properties concerning implication betweenclauses. Notably let c+; c� be the positive and negative literals of c and d+; d� bethe same for d. Now if c j= d then c+ �-subsumes d+ and c� �-subsumes d�.5.5.1. Sub-uni�cation The problem of inverting implication is discussed in apaper by Lapointe and Matwin [63]. They note that inverse resolution (Section5.4) is incapable of reversing SLD derivations in which the hypothesised clause isused more than once. In fact Plotkin [100] showed that the same problem appearsin the use of relative least general generalisation of clauses (see de�nition of c-derivations). Lapointe and Matwin go on to describe sub-uni�cation, a process ofmatching sub-terms. They demonstrate that sub-uni�cation is able to constructrecursive clauses from fewer examples than would be required by ILP systems suchas Golem [90] and FOIL [105]. For instance, given the atoms append([]; X;X)and append([a; b; Y ]; [1; 2]; [a; b; Y;1; 2]) sub-uni�cation can be used to construct therecursive clause append([U jV ];W; [XjY ]) append(V;W; Y )Unlike the approach taken originally with inverse resolution [89], Lapointe andMatwin do not derive sub-uni�cation from resolution. Instead sub-uni�cation isbased on a de�nition of most general sub-uni�ers. Although the operations de-scribed by Lapointe and Matwin are shown to work on a number of examples it isnot clear how general the mechanism is.A complete though non-deterministic algorithm is given for inverting implicationin [85]. A complete and deterministic method is given by Idemstam-Almquist[50]. A new and simple inverse implication technique called \forced simulation"is described in [26].5.5.2. Implication and resolution In this section the relationship between resolu-tion and implication between clauses is investigated. Below a de�nition equivalentto Robinson's [120] resolution closure is given. The function RL below containsonly the linear derivations of Robinson's function R. However, the closure is equiv-alent up to renaming of variables given that linear derivation (as opposed to inputderivation) is known to be complete.De�nition5.8. (Resolution closure)Let T be a set of clauses. The function RL is recursively de�ned asRL1(T ) = TRLn(T ) = fc j c1 2 RLn�1(T ); c2 2 T; c is the resolvent of c1 and c2gthe resolution closure RL�(T ) is RL1(T ) [RL2(T ) [ : : :
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650 5.5.3. Nth powers and nth roots of clauses The set of clauses constructed by self-recursing c, RL�(fcg), is partitioned into levels by the function RL. By viewingresolution as a product operation Muggleton and Buntine [89] stated the problemof �nding the inverse resolvent of a pair of clauses as that of �nding the set ofquotients of two clauses. Following the same analogy the set c2 = RL2(fcg) mightbe called the squares of the clause c and c3 = RL3(fcg) the cubes of c. Thefollowing de�nition from [85] captures this idea.De�nition5.9. (nth powers of a clause)Let c and d be clauses. For n � 1, d is an nth power of c if and only if d is analphabetic variant of a clause in RLn(fcg).Taking the analogy a bit further one might also talk about the nth roots of aclause.De�nition5.10. (nth roots of a clause)Let c and d be clauses. d is an nth root of c if and only if c is an nth power of d.We now have: in terms of nth roots of a clause.Corollary 1. (Implication between clauses in terms of nth roots) Let c bean arbitrary clause and d be a non-tautological clause. c j= d if and only if forsome positive integer n, c is an nth root of a clause e which �-subsumes d.It is fairly straightforward to enumerate the set of clauses which �-subsume agiven clause. Therefore the problem of �nding the set of clauses which imply agiven clause c reduces to that of enumerating the set of nth roots of clauses which�-subsume c. The special case of clauses which immediately �-subsume c occurswith n = 1. An algorithm for constructing nth roots is given in [85].5.5.4. Implication and background knowledge In the normal setting of InductiveLogic Programming (Section 3.1) generalisation is carried out in the presence ofbackground knowledge. In this section the solution to inverting implication betweenclauses is extended to the case in which background knowledge is present.Assume a background clausal theory B and a clause (or example) c which is notentailed by B. Assume that there is a single clause d such thatB ^ d j= cThis problem can be transformed to one involving implication between single clausesas follows. B ^ d j= cd j= (B ! c)j= d! (B ! c)j= d! (B ^ c)j= d! (l1 ^ l2 ^ : : :)
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651In the last line (B ^ c) is replaced with a conjunction of all ground literals whichcan be derived from (B ^ c). This can be viewed as replacing the formula witha model of the formula. Since (l1 ^ l2 ^ : : :) is a conjunction of literals, the lastline above represents implication between two clauses. The clause (l1 _ l2 _ : : :)can be constructed to be of �nite length if B is range-restricted or generative (see[90]) and elements of the model are only constructed to a �nite depth of resolution.This clause can then be used to construct c using an algorithm for constructingnth-roots.6. Probabilistic semantics: con�rmation and beliefAccording to Utgo� and Mitchell [139], bias is anything which in
uences how theconcept-learner draws inductive inferences based on the evidence. There are twofundamentally di�erent forms of bias: declarative bias, which de�nes the space ofhypotheses to be considered by the learner, i.e. what to search, and preferencebias, which determines how to search that space, which hypotheses to focus on, andwhich ones to prune, etc. In this section, we will discuss the probabilistic semanticsof ILP, which underly any preference bias. The next section presents di�erent formsof declarative bias.Since there will generally be more than one candidate hypothesis which explainsall the examples we need a sound basis for grading hypotheses, i.e. a preferencebias. Many ILP algorithms, such as FOIL [105] use information based techniquesto guide search. In this section the information compression techniques describedin [80, 92, 27] are presented within a unifying Bayesian approach to con�rmationand corroboration of hypotheses. The relationship between the probabilistic viewand information view are shown from �rst principles. This general approach hasthe advantage of being applicable even when only positive examples are available.6.1. Probability calculusUnlike deductive inference, the conclusions of inductive inference are not assuredto follow from what is known. Thus, each inductively inferred logical statement isaccompanied by a degree of belief, or probability value (see Section 4).The probability calculus, like the predicate calculus, has its basis in set theory.Figure 1 is a Venn diagram depicting the intersecting sets P and Q within theuniversal set U.The probability of a randomly chosen element of U being in P, written p(P) isde�ned as follows. p(P) = jPjjUjSimilarly for Q. Given that a randomly chosen element of U is found within Q, theprobability that it is also found within P, written p(PjQ), isp(PjQ) = p(P \Q)p(Q)p(PjQ), or the probability of P given Q, is known as a conditional probability.Noting that p(P \Q) = p(PjQ):p(Q) = p(QjP):p(P)
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U

P Q

Figure 1. Venn diagram for probabilitiesand rearranging gives Bayes' theorem,p(PjQ) = p(P):p(QjP)p(Q)Suppose that in Figure 1 P represents the set of all Herbrand models of the w� P ,Q the same for the w� Q and U= 2B(P^Q) the set of all Herbrand interpretationsof P ^Q. Then p(P) = p(P ) is simply the proportion of interpretations of P whichare models of P . This is also the probability that a randomly chosen interpretationis a model of P . p(P jQ) is the proportion of models of Q which are models of P .This probabilistic interpretation of �rst-order predicate calculus was suggested bythe Philosopher of Science Carnap [22, 78] in the 1950s. It has the properties thatp(2) = 0,p( ) = 1,p(P ^Q) = p(P \Q),p(P _Q) = p(P [Q),p(P ) = 1� p(P ) andp(P ) � p(Q) if P j= Q.However, p(P ) is unde�ned when P has an in�nite set of Herbrand models.6.2. Justi�cationSuppose we are attempting to induce a de�nition of the predicate pn from positiveexamples only. Abduction will have two extreme solutions.H = > = p(x1; ::; xn) H = ? = E+
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653When negative examples are present, application of the posterior satis�ability con-dition (Section 3) will replace the unique topmost element by a set of topmostelements. In the following let T = B ^HLet us assume that our degree of belief in a formula can be represented as a sub-jective probability. We can therefore make use of Bayes' Theorem as follows.p(T jE) = p(T ):p(EjT )p(E)Below we assume that the evidence is correct and therefore p(E) = 1. As alreadymentioned, Carnap took the view that p(T ) is the proportion of interpretationswhich are models of T . This leads to the paradox that if T has a �nite set ofmodels among an in�nite set of interpretations then p(T ) = 0, i.e. T is necessar-ily false. Solomono� [128] took an alternative approach to these probabilities byre-interpreting them in information terms. Any recursively enumerable set musthave �nite information since it can be denoted by a �nite formula. However, a the-ory T for which p(T ) = 0 has in�nite information. In all other ways Solomono�'ssyntactically-oriented approach provides a usable approximation to Carnap's prob-abilistic interpretation of logic formulae.Like Carnap's interpretation Solmono�'s approach can be used to ascribe priorprobabilities to logic programs. However, in Solomono�'s case p(P ) = 2��(P ) where�(P ) is the number of bits in the minimum encoding of P (the information contentof the formula P ). In both Carnap and Solomono�'s case, since the number of logicprograms is large and prior probabilities must sum to 1, the prior probability of anyparticular logic program will be very small. Larger logic programs can be composedof smaller logic programs by conjunction. When the models of two logic programsP and Q are independent (the `average' case) p(P ^Q) = p(P ):p(Q). Even when Pand Q are not independent p(P ^Q) must be less in Carnap's interpretation thanboth p(P ) and p(Q) (see Figure 1). According to Shannon's information theory, theinformation content of logic program P is I(P ) = �log2p(P ). Using this de�nitionwe have the following properties for the information content of logic programs.Empty program. (I( ) = 0) since (p( ) = 1).Empty clause. (I(2) =1) since (p(2) = 0).Additive composition. (p(P ^ Q) = p(P ):p(Q)) implies (I(P ^ Q) = I(P ) +I(Q)).Note that additive composition assumes independence of P and Q. We have thefollowing corollary of Bayes' Theorem.Corollary 1. Information Bayes. Let E represent the evidence for theory T .Then if T j= E then I(T jE) = I(T ) + I(EjT )� I(E)Proof. Simply the log form of the Bayes' formula. 2It is possible that for certain T , I(T jE) � I(B ^ E). In this case we mightsay that T does not \compress" the examples, since it has greater information
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654 content than the examples themselves. Random data (sometimes called noise)cannot be compressed. The principle of choosing the theory which minimises I(T jE)is known as Rissanen's minimum description length principle (MDL)[119]6. TheMDL principle has been made use of in machine learning by Quinlan and Rivest[104]. MDL has been used in ILP in [80, 92, 27] and [105]. It is a generalisation ofother Bayesian con�rmation techniques such as those used in [32].The following result shows that the choice of the theory with minimum descrip-tion is equivalent to choosing the theory which has maximum Bayes' posteriorprobability. This is the same as Fisher's maximum likelihood principle (maximiseI(EjT )) when the prior probability p(T ) is assumed to be the same for all T .Theorem 1. Equivalence of minimum description and maximum posteriorprobability. Let E be evidence for a set of potential theories chosen from �.minT2�I(T jE) = �log2maxT2�p(T jE)Proof. Follows trivially from the fact that log2 is monotone and I(T jE) =�log2p(T jE).Solmono�'s � function is not computable due to halting. However a variety ofgood approximations to this approach are given in [105, 80, 92, 27]. The �ne detailsof functions used are beyond the scope of this paper.7. Declarative BiasIn this section, we will brie
y discuss the most important forms of declarativebias. Current ILP systems, distinguish two kinds of declarative bias: syntactic bias(sometimes also called language bias) and semantic bias. Syntactic bias imposesrestrictions on the form (syntax) of clauses allowed in hypothesis. To illustratesyntactic bias, let us consider abduction as it is usually perceived in logic pro-gramming. Roughly speaking, abduction can be considered the special case of thenormal setting in inductive logic programming, where the syntactic bias restrictsthe hypotheses to positive ground unit clauses, where the positive evidence is a trueground fact, and the negative evidence a set of integrity constraints. Semantic biasimposes restrictions on the meaning, or the behaviour of hypotheses. To illustratesemantic bias, consider types and modes.7.1. Syntactic BiasFormally speaking, a syntactic bias de�nes the set of well-formed hypotheses H.The set of well-formed hypotheses H is usually de�ned from a language bias L,which is the set of syntactically acceptable clauses.Since the syntactic bias of an ILP system determines the actual result, it is avery important parameter of an ILP system. Whereas previously, most ILP systemsemployed an implicit built-in syntactic bias, there is a growing interest in general6Rissanen's principle is a variant of Jayne'smaximum entropy principle but more sophisticatedthan William of Ockham's (1290-1349) razor principle which advocates minimising I(T ) ratherthan I(T jE).
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655formalisms to specify syntactic bias. The advantage of such general formalisms isthat language bias can be decoupled from particular ILP implementations. Hence,it becomes a true portable parameter of the system, which facilitates the comparisonof di�erent systems. In the remainder of this section, we �rst present four di�erentframeworks for bias speci�cation, and then brie
y study the link between syntacticbias and the e�ciency of ILP algorithms.7.1.1. General frameworks for bias-speci�cation At present there exist four moreor less general frameworks to specify language bias, i.e. to specify the set of clausesallowed in hypotheses. This includes: the inductive logic programming languageof Bergadano [8, 10], the antecedent description grammars of Cohen [24, 23], theschemata of the BLIP-MOBAL team [35, 54] and their variants [111, 127, 135].The fourth framework, parametric languages as de�ned by [90, 107, 20, 25], will bepresented when discussing the link to the complexity of learning.Bergadano's inductive logic programming language uses a notation close to PRO-LOG as it aims mainly at applications in programming. It extends PROLOG bymeans of clause sets and predicate sets. As an example, consider the followingexpression: ffather(X,Y)  fmale(X),female(X)g, parent(X,Y);mother(X,Y)  fmale(X),female(X)g, parent(X,Y) gSet expressions, denoted using fg, are used to express that a subset of the literalsor clauses may be present in the �nal hypothesis. The above expression denotesthe hypotheses space consisting of all subsets of the following set of clauses:ffather(X,Y)  male(X),female(X), parent(X,Y);father(X,Y)  female(X), parent(X,Y);father(X,Y)  male(X), parent(X,Y);father(X,Y)  parent(X,Y);mother(X,Y)  male(X),female(X), parent(X,Y);mother(X,Y)  female(X), parent(X,Y);mother(X,Y)  male(X), parent(X,Y);mother(X,Y)  parent(X,Y)gWhereas the framework introduced by Bergadano aims at readability, the frame-work of Cohen aims at generality and computing power. Cohen employs a kind ofde�nite clause grammar, which he calls antecedent description grammars, to de-scribe the set of well-formed clauses. The above clauses can be encoded in thisformalism as follows:goal formula(father(X,Y))).goal formula(mother(X,Y))).body(father(X,Y) ! m(X),f(X), [ parent(X,Y) ]body(mother(X,Y) ! m(X),f(X), [ parent(X,Y) ]m(X) ! []m(X) ! [male(X)]f(X) ! []f(X) ! [female(X)]
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656 In this notation, goal formula de�nes the predicates to be learned, and body(P)is the starting symbol of a grammar for learning clauses with as head P . As forde�nite clause grammars, square brackets enclose terminal symbols.Another type of syntactic bias that is often used in inductive logic programmingis a form of second-order schemata. Here, we present the formalism �rst introducedby Emde et al. [35] and later adapted or employed by [77, 147, 137, 111, 127, 54,135]. Slightly di�erent but related formalisms have been considered by [149, 38]. Asecond-order schema is basically a clause, where some of the predicate names are(existentially quanti�ed) predicate variables. One such second order schema is e.g.S = 9p; q; r : p(X;Y ) q(X;XW ); q(Y W; Y ); r(XW;Y W )A set of second order schemata de�nes a language bias as the set of all clausesthat can be obtained by instantiating a second order schema with a second ordersubstitution. A second order substitution is a substitution that replaces predicate-variables by predicate-names.For schema S, � = f p = connected, q = part-of, r = touchesg is a second ordersubstitution. The instantiated schema S� yields :connected(X,T)  part-of(X,XW), part-of(YW,Y), touches(XW,YW)The above three ways of specifying bias, have the advantage that the speci�ca-tion is closely connected to the structure on the search space under �-subsumption.Indeed, Kietz and Wrobel [54] showed, both theoretically and also in their MOBALsystem, that second order schemata can be partially ordered and e�ectively searchedusing an extension of �-subsumption, Cohen showed that generality can be deter-mined at the sentential level (which are sentences containing both terminals andnon-terminals) and e�ectively used to guide the search, and for Bergadano's for-malism the structure of the search-space follows directly from the set notation. Thethree formalisms can therefore be easily used in the general-to-speci�c frameworkunder �-subsumption.Finally, let us note that Cohen's formalism is the most powerful but least declar-ative framework, and that both Bergadano's framework and that of BLIP-MOBALare complementary. Indeed, using Bergadano's framework it is easy to make ab-straction of the number of literals in a clause whereas a language bias having a�xed number of literals would result in a huge number of expressions. Schemataare complementary in that the opposite is true. Therefore, it might be interesting toconsider a straightforward generalisation of both models, where the set expressionsalso allow for predicate variables.7.1.2. Syntactic bias and the complexity of the search. Earlier approaches [107,90, 20] to bias speci�cation employed a parametric approach, where a number ofparameters determined the syntax of clauses in the hypotheses. The parametricapproach has the advantage that it is easy to implement a shift of bias [107], whichoccurs when the learner changes the language bias. Changing the language biasmay be necessary when there exists no solution within a certain syntactic bias.Using a parametric approach, shifting the bias can be realized by modifying theparameters in such a way that the language becomes more expressive.In the parametric approach various parameters have been employed; many ofthem are rather straightforward and include criteria such as restrictions on the



www.manaraa.com

657maximum number of variables in a clause, the maximum number of literals in aclause, the predicates allowed in the hypotheses, etc.Before presenting some of the more advanced notions, we introduce \linked"clauses [48].De�nition7.1. A clause is linked if all of its variables are linked. A variable vis linked in a clause c if and only if v occurs in the head of c, or there is a literal lin c that contains the variables v and w (v 6= w) and w is linked in c.The linkage requirement is meant to exclude usually useless clauses such as, forinstance, p(X) r(Z). A linked clause is for instance, p(X) q(X,Y),r(Y,Z),t(Z,W).The following parameters are important as they determine the computationalcomplexity of the learning.De�nition7.2. (depth of term) The depth d(V ) of a variable V is 0. The depthd(c) of a constant c is 1. The depth d(f(t1; :::; tn)) of a term f(t1; :::; tn) is 1 + maxd(ti).Limiting the depth of terms in hypotheses to 1, corresponds to working withfunctor free clauses.De�nition7.3. (level of a term) The level l(t) of a term t in a linked clause c is0 if t occurs as an argument in the head of c; and 1 + min l(s) where s and t occuras arguments in the same literal of c.The variable F in father(F,C)  male(F), parent(F,C) has level 0, the variableC in father(F) male(F), parent(F,C) has level 1, the variableG in grandfather(F) male(F), parent(F,C),parent(C,G) has level 2, etc. The level of a term corre-sponds to Muggleton and Feng's i parameter [90] and De Raedt's level of existentialquanti�cation [107].Both the level and the depth of terms are frequently employed by ILP learners tode�ne language restrictions, see for example [90, 107, 109, 25, 56]. The two notionsare especially important in the context of speci�c-to-general ILP systems such asITOU [121], GOLEM [90], CLINT [107] and PGA [20], because this class of learnersstarts learning from a so-called starting clause. The starting clause SC(B;L; e) isa function of the background theory B, the language bias L and a positive examplee. SC(B;L; e) yields a most speci�c clause c 2 L such that B ^ c j= e.For linked languages with maximumdepth 1 and level > 1, the starting clause isunique, but the number of literals can grow exponential with its level, see Example1. Example7.1. Let B be de�ned as follows:B = 8>><>>: parent(jef; paul) parent(jef; ann) male(paul) female(ann)  let e = is-a-father-of-son(jef), and let the clauses in the languages have a maximum
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658 depth 1 and maximum level 2. The only starting clause is then:is-a-father(jef)  parent(jef,ann), parent(jef,paul),female(ann),male(paul)Therefore, speci�c-to-general systems being complete for these languages� with-out using additional (semantic) restrictions � are necessarily ine�cient, cf. [56].Also, starting clauses are not necessarily unique and the number of startingclauses can be exponential in the maximum number of variables allowed in clauses.This is illustrated in Example 2.Example7.2. Given the same backgroundknowledge and example as in Example1 and clauses having a maximum of two variables, the following clauses are legalstarting clauses:is-a-father(F)  parent(F,C), male(C)is-a-father(F)  parent(F,C), female(C)It is easy to extend this example and show that the number of starting clausescan grow exponentially in the number of variables.7.2. Semantic BiasAlthough modes and types are usually employed to optimise the e�ciency of Prologcompilers [71, 73, 18], they are also relevant to bias the set of acceptable hypothesesin inductive logic programming. Indeed, since Shapiro's MIS [125] it has becomequite standard in inductive logic programming to provide the learner with type andmode declarations (cf. e.g. [65, 90, 130, 54, 145]).Since modes and types are well-known in logic programming,we do not formalisethem here, but rather illustrate their use on an example.For example, the ILP system Progol [88] allows the user to specify declarationsof the predicates in the background theory such as:mode(1; append(+list;+list;�list)mode(�; append(�list;�list;+list)list(nil)  list([XjT ])  integer(X); list(T )The �rst mode states that the predicate append will succeed once (1) when the�rst two arguments are instantiated with lists and on return the third argumentwill be instantiated by a list. Types such as list are user-de�ned as monadic back-ground predicates. The second declaration states that append will succeed �nitelymany times (�) when the third argument is instantiated by a list. The speci�edlimit on the degree of indeterminacy of the call can be any natural number or �.Modes are useful for inductive logic programming for two reasons. First, if weare in a single-predicate learning context, and the background predicates and theirmodes are correctly speci�ed, the learner can guarantee termination by assuringthat the queries it generates are mode-conform. Secondly, the learner can optimiseits search when answering queries. Indeed, given the �rst declaration for append,
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659the learner does not need to backtrack after having found a �rst solution to a querymatching the declaration.Given type declarations of the predicate to be learned, the learner need onlyconsider the type-conform subset of its hypothesis space. This can drastically reducethe computation needed.Another semantic bias, employed by the ILP systems GOLEM [90], FOIL [103],and LINUS [65], is the notion of determinate clauses. Here, we adopt the simplerde�nition of [33] instead of the original one of [90].De�nition7.4. (adapted from [33]) A de�nite clause h l1; :::; ln is determinate(with respect to background knowledge B and examples E) if and only if for everysubstitution � for h that uni�es h to a ground instance e 2 E, and for all i = 1; : : : ; nthere is a unique substitution �i such that (l1 ^ :::^ li)��i is both ground and trueinM+(B).Roughly speaking, a clause is determinate if all of its literals are determinate;and a literal is determinate if each of its variables that does not appear in precedingliterals has only one possible binding given the bindings of its variables that appearin preceding literals.To illustrate determinacy, reconsider the background theory B of Example 2.Here, the clause has-father(Y)  parent(F,Y) is determinate as given a Y there isa unique instantiation of F that is true. On the other hand, the clause is-father(F) parent(F,Y) is not determinate as there exist two true instantiations of Y givenF . Notice also that none of the clauses shown in Example 2 is determinate.Determinate clauses are one way to get around some of the problems indicatedin Examples 2 and 1. Indeed, some of the results in computational learning theoryshow that certain classes of determinate clauses can be learned e�ciently (cf. [33]and Section 8). This however at the cost of losing completeness.8. LearnabilityThe discussion in the sections so far has revolved around the process of hypoth-esis formation and justi�cation. However it was noted in Section 2.5 that this isonly a part of a larger scienti�c setting in which facts are gathered, experimentsplanned, and alternative theories tested. A simpli�ed scenario of this kind is stud-ied in the theory of \learnability". Learnability concerns itself with the convergenceproperties of a process of forming and revising predictive hypotheses. Two mainapproaches to learnability will be discussed in this chapter. These are� Gold's [41] identi�cation in the limit. This approach is derived from com-putability theory. It deals with �nite time convergence of a computationallearning procedure.� Valiant's [140] Probably-Approximately-Correct(PAC) learning. This is de-rived from computational complexity theory and deals with the expectedrate of convergence.Current learnability results address only the de�nite and the example settings ofinductive logic programming.
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660 8.1. Identi�cation-in the-limitBoth identi�cation-in the-limit and PAC-learnability assume a prede�ned class ofhypothesised theories H, derived from the syntactic bias L which de�nes the clausesthat can be part of a hypothesis. Here H will be assumed to contain only sets ofde�nite clauses. A presentation of a de�nite clause theory T is de�ned as follows.Let Q+(T ) be the set of clauses true inM+(T ) and using the same alphabet as T ;let Q�(T ) be the set of clauses false inM+(T ) and using the same alphabet as T ;Q = Q� [Q+.De�nition8.1. E1 = hE0; E1; E2; : : :i is a presentation of T if and only ifE0 = ;and for all i � 1, Ei = Ei�1 [ feig for an ei 2 (Q+(T ) [ Q�(T )) such thatM+(E1) =M+(T )7.The following is an ILP-oriented variant of Gold's de�nition.De�nition8.2. Let B be a de�nite clause background theory and H(B) be aclass of de�nite clause theories. Let A be an ILP algorithm which given positiveand negative evidence E = E+[E� returns an hypothesis H 0 = A(B;E) such thatposterior satis�ability and posterior su�ciency holds. Algorithm A identi�es theclass H(B) in the limit if and only if for each H in H(B) and presentation E1 =hE0; E1; : : :i of H there is a �nite i such thatM+(B ^H) =M+(B ^ (A(B;Ej)))for all j � i.The intuition behind Gold's formalism is that a certain class of learning tasksis \learnable" when there exists an algorithm that will �nd a correct hypothesis in�nite time for all of these learning tasks if the algorithm is provided with enoughevidence.Gold gives various results showing that certain classes of theories cannot beidenti�ed in the limit. One such class is illustrated in Example 1, the example isadapted from [11].Example8.1. Suppose H = fH1, H2, H3g, where the Hi are de�ned as follows:H1 = p(a) H2 = � p(b) p(c) H3 = 8<: p(b) p(c) p(d) Given the presentation hp(b); p(c); p(b); p(c); : : :i one cannot distinguish between H2and H3, implying that even a �nite class of �nite ground unit clauses cannot beidenti�ed in the limit from positive examples only.7Here, we implicitly assume that a unique minimal model of E1 exists, even though E1 maycontain general clauses.
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661The main results in identi�cation in the limit in ILP are due to Shapiro [125] andDe Raedt [107, 110]. Shapiro proves that his MIS system (equipped with the eagersearch strategy) identi�es any h-easy de�nite clause theory from a presentationconsisting of (positive and negative) examples and an oracle to answer membershipand existential questions. Roughly speaking, an h-easy de�nite clause theory is ade�nite clause theory for which there exists a function h from the Herbrand baseto the natural numbers, which returns for a given fact, the maximum depth of theSLD-proof tree needed to prove that the fact is true. The value returned by h isused as a depth bound on the proof of the fact, in order to guarantee termination.A membership question asks the oracle for the truth-value of a ground fact; andan existential question asks the oracle for the truth-value of a non-ground fact.For membership questions, the oracle has to answer true or false. For existentialquestions, the oracle must answer with ground substitutions for which the fact istrue, or with false, meaning that no instantiation of the fact is true.De Raedt and Bruynooghe [110] upgraded Shapiro's result towards presentationsusing any presentation containing positive clausal evidence only8. In their adapta-tion of Shapiro's MIS, they restrict their attention towards functor free clauses. In[107], this restriction is � under certain conditions � lifted for the CLINT system.Other results in identi�cation in the limit are due to Plotkin [100] and Banerji [4].8.2. PAC-learnabilityThe following is a variant of Valiant's de�nition of PAC-learnability.De�nition8.3. Let B be a de�nite clause theory and H(B) be a class of def-inite clause theories. Let A be an algorithm which given positive and negativeexamples E = E+ [ E� returns an hypothesis H 0 = A(B;E) in H(B) such thatposterior su�ciency and posterior satis�ability holds. Let error(B ^ H 0; B ^ H)be the probability that an example drawn from B(H) (see Section 3.2) accordingto distribution D is true in M+(B ^H 0) and false in M+(B ^H) or vice versa.Algorithm A PAC-learns the class H(B) if and only if for each H in H(B) andevery probability distribution D of B(H), and all � and �, 0 < �; � < 1, there is apolynomial function f such that for a random sample of examples E � B(H) of sizeat least f(1=�; 1=�) drawn from distribution D, the probability that H 0 = A(B;E)has error(B ^H 0; B ^H) � � is at least 1� �.8.3. PAC-learnability results in ILPLearning-in-the-limit results are well-established in the ILP literature both for full-clausal logic [100] and de�nite clause logic [125, 4, 110, 107]. These results tell onelittle about the e�ciency of learning. In contrast, Valiant's [140] PAC (Probably-Approximately-Correct) framework is aimed at providing complexity results formachine learning algorithms. Furthermore, the PAC-framework does not requireconvergence to a correct hypothesis, but rather to a hypothesis that is with high8Notice that a negative example n in the de�nite setting can be expressed as positive evidence n.
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662 probability (1� �) approximately correct (1� �), hence resulting in a more realisticframework.Haussler's [46] negative PAC result concerning existentially quanti�ed formulaeseemed initially to exclude the possibility of PAC results for �rst-order logic. Thesituation has been improved by recent positive results in signi�cant sized subsetsof de�nite clause logic. These results have been possible for particular languagebiases (see Section 7). Namely, single constrained Horn clauses [94] (depth = 0,level = 0 in Section 7.1) and k-clause ij-determinate non-recursive single-predicatelogic programs [33] under simple distributions. (k denotes maximum number ofclauses in hypotheses, i denotes level, j denotes the maximum arity of predicates inthe background knowledge and simple distributions are limited to those which arecomputable). Recursive ij-determinate predicates were shown to be PAC-learnablewhen membership queries are allowed. Thus the de�nition of quick-sort is PAC-learnable using membership queries.Kietz [56] showed that the following languages are not PAC-learnable� one-clause j-determinate programs, even without recursion� one-clause ij-indeterminate programs, even without recursionThe second result disables the learning of the following simple non-determinateclause. male(X) : �brother(X;Y ):However, Cohen [25] recently showed that single de�nite clauses with boundedindeterminacy and polynomial literal support are PAC-predictable (the same asPAC-learnable except that hypotheses do not have to be within H(B)). Cohen'srestriction on the indeterminacy of a single clause hypothesis is as follows.De�nition8.4. (l-indeterminate) A clause h b1; ::; br is called l-indeterminate(with respect to background knowledge B and E) if and only if for every possiblesubstitution � of h to some ground instance e 2 E and for all i = 1; ::; r there areat most l distinct substitutions � such that (b1 ^ ::^ bi)�� is both ground and trueinM+(B).Thus the clause above for de�ning male could be learned if a bound could be puton the maximum number of brothers and sisters any individual might be expectedto have.9. Predicate inventionThe following theoretical characterisation of predicate invention follows that in [86].If P is a logic program then the set of all predicate symbols found in the headsof clauses of P is called the de�nitional vocabulary of P or P(P ). ILP has thefollowing three de�nitional vocabularies.Observational vocabulary: O = P(E+ [E�)Theoretical vocabulary: T = P(B) � OInvented vocabulary: I = P(H) � (T [ O)The learner carries out predicate invention whenever I 6= ;.
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6639.1. Necessary predicate inventionLing [68] discusses the conditions under which predicate invention is necessary.This requires the following addition to the satis�ability, necessity and su�ciencyrequirements of Section 3.Necessary invention: I 6= ; for each H which provides su�ciency and consis-tency.In other words predicate invention is only necessary when there does not exist a�nite axiomatisation of the predicates in O containing only predicate symbols fromT [ O. The following theorem is from Stahl [129].Theorem 1. Decidability with �xed vocabulary. Given a recursively enumer-able, deductively closed set of formulas C in a �rst order language L it is unde-cidable whether C is �nitely axiomatisable in L.Stahl's proof is based on an application of Rice's Theorem [117] on the unde-cidability of non-trivial index sets being recursively enumerable. This result meansthat the necessity of invention must by needs be heuristic in the general case. How-ever, if constraints on the language and depth of inference such as those discussedin Sections 7 and 8 are applied, this problem becomes decidable.The following result due to Kleene [60] shows the importance of the introductionof new predicates in constructing �nite axiomatisations.Theorem 2. Finite axiomatisation given additional vocabulary. Any recur-sively enumerable, deductively closed set C of formulas in a �rst order languageL is �nitely axiomatisable using additional predicate symbols other than those inL.Although Kleene's proof is constructive it introduces new predicates regardlessof whether they are necessary. Clearly any one of a potentially in�nite set of newpredicates could be introduced. It seems reasonable that when it is necessary toextend the vocabulary this should be done in as conservative a manner as is possible.To do so requires a notion of ordering over invented predicates.In [86] a lattice of utility of invented predicates is introduced. The lattice has aunique topmost and bottom-most element. An equivalence class over the set of allpossible invented predicates allows one to investigate only one of a set of inventedpredicates which are equivalent up to re-ordering of arguments and removal ofredundant arguments. By making use of least-upper-bound and greatest-lower-bound operators, this utility lattice should provide a sound and complete approachto searching for invented predicates.9.2. Predicate invention techniquesMost ILP systems which carry out predicate invention [79, 89, 122, 5, 68] are basedon use of the inverse resolution W -operators (see Section 5.4). This necessarilyinvolves a speci�c-to-general search.An exception to this approach is found in [145] and [147] in which a general-speci�c search is employed. The search is guided by the use of mode declarationsin [145] (see Section 7.2).
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664 In [62], the authors use W -operators to introduce new predicates. The auxiliarysub-predicates are then generalised using inverse implication (see 5.5). This allowscertain sub-predicates to be learned which could not have been learned otherwise.10. ILP implementationsUp till now, we discussed � what are in our view � the foundations of the �eld ofinductive logic programming, in particular, the model-theory, the proof-theory, theprobabilistic semantics, the bias, the notions of predicate invention and learnability.The underlying assumption is that these foundations lie at the heart of ILP and aresu�cient for understanding ILP. As a consequence, we ignored several other issuesin ILP, mainly because they are closely connected to particular ILP implementationsand applications. This includes for instance the use of an oracle, theory revision,and the handling of numerical data. At the same time, we also did not study anyparticular ILP system in detail. In this section, we will brie
y touch on these twomatters. First, we will discuss some dimensions and issues of ILP as perceived byusers of ILP systems. Secondly, we will give a short overview of some selected ILPsystems.10.1. Characteristics of ILP systemsPractical ILP systems can be classi�ed along di�erent dimensions as perceived byusers of ILP systems. Obvious characteristics, studied earlier in this paper, includethe types of bias employed, the ability to invent new predicates, and the heuristicsemployed to handle imperfect data and noise.10.1.1. Incremental/non-incremental This dimension describes the way the ev-idence E (examples) is obtained. In non-incremental or empirical ILP, the evidenceis given at the start and not changed afterwards, in incremental ILP, the examplesare input one by one by the user, in a piecewise fashion. Non-incremental sys-tems search typically either speci�c-to-general or general-to-speci�c. Incrementalsystems usually employ a mixture of these strategies as they may need to correctearlier induced hypotheses. Incremental ILP systems include MIS [125], CLINT[107], MOBAL [54], FORTE [118], RX [134], LFP [144], and CIGOL [89]. Non-incremental systems include GOLEM [90], FOIL [105], FOCL [95], GRENDEL [24],CLAUDIEN [113], mFOIL [32], and LINUS [66].10.1.2. Interactive/ Non-interactive In interactive ILP, the learner is allowed topose questions to an oracle (i.e. the user) about the intended interpretation. Usuallythese questions query the user for the intended interpretation of an example or aclause. The answers to the queries allow to prune large parts of the search space(in the generic algorithm queries would normally be generated in the procedurePrune). Obviously, interactiveness implies incrementality. Most systems are non-interactive. Interactive systems include CIGOL [89], MIS [125], and CLINT [107].
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66510.1.3. Single/Multiple Predicate Learning/Theory Revision Suppose P(F ) rep-resent the predicate symbols found in formula F . In single predicate learningfrom examples, the evidence E is composed of examples for one predicate only,i.e. P(E) is a singleton. In multiple predicate learning, P(E) is not restrictedas the aim is to learn a set of possibly interrelated predicate de�nitions. Theoryrevision is usually a form of incremental multiple predicate learning, where onestarts from an initial approximation of the theory. Although theory revision sys-tems have been around ever since MARVIN [124], MIS [125], followed by Banerji[4], BLIP-MOBAL [147], ML-SMART [9], CIGOL [89] and CLINT [108], there hasrecently been a renewed interest in theory revision and multiple predicate learning,cf. [2, 1, 6, 115, 118, 146, 28, 10, 134, 113, 148, 110]. These newer approachesdi�er from the previous ones in the sense that they try to learn without requiringan oracle. Note that also ML-SMART and BLIP-MOBAL did not require an ora-cle. Although it is commonly believed that theory revision and multiple predicatelearning algorithms are fundamentally di�erent from single predicate learners, bothtypes of systems �t in a natural way in the generic algorithm outlined in Section 4.The main di�erences between theory revision systems and single predicate learn-ers are the following. Theory revision systems typically use a variety of deductiveand inductive inference rules, e.g. combining abduction, with specialisation andgeneralisation. Secondly, as for incremental systems, they can both generalise andspecialise. Specialisation occurs when a negative example is implied by the hypoth-esis, and generalisation when a positive example is not implied. Finally, in theoryrevision it is important to modify the theory as little as possible, and to stay asclose to the original theory as possible. This issue is formalised in the recent workof Stefan Wrobel [148].10.1.4. Numerical data The mesh domain (Section 11.1.5) involves predictingthe number of sections that an edge of a CAD object should be broken into fore�cient �nite-element analysis. The rules developed by GOLEM [90] have thefollowing form. mesh(Obj; 8) connected(Obj;Obj1); : : :With a small number of examples it is hard to get enough examples in which theprediction is an exact number, such as 8. Instead we would like the rules to predictan interval such asmesh(Obj;X)  7 � X � 9; connected(Obj;Obj1); : : :This kind of construction is not handled elegantly by existing systems (thoughLINUS [66] and more recently FOIL [103] can use TDIDT-extensions [101] to in-troduce tests such as X � 9). In statistics this problem of numerical prediction isknown as regression. Many e�cient statistical algorithms exist for handling numer-ical data. ILP system designers are starting to look at smoothly integrating suchapproaches into their systems. Recent work on introducing linear inequalities intoinductively constructed de�nite clauses [75, 53] provides an elegant logical frame-work for this problem. This approach also allows the introduction of ConstraintLogic Programming (CLP) techniques into ILP.
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666 10.2. ILP SystemsIn this section, we give an overview of a number of important inductive logic pro-gramming systems. It is clear that a complete overview of all systems is outsidethe scope of this paper, given the very large number of ILP systems and imple-mentations. Instead, the overview centres around the following 6 systems: MIS[125], MOBAL-BLIP [54], CIGOL [89], GOLEM [90], FOIL [105], and CLAUDIEN[113]. These systems were selected because they are fundamentally di�erent, andcontributed signi�cantly to inductive logic programming. Furthermore, most of theother systems are very much related to these 6.One of the �rst real inductive logic programming systems9 in the sense thatit was related to I as well as LP and involved both theory and implementation,is the MIS system of Ehud Shapiro [125]. The MIS system introduced severalimportant techniques in inductive logic programming. These include re�nementgraphs (see Section 5.2.2) for general to speci�c search, the backtracing algorithmto locate incorrect clauses in programs, identi�cation in the limit of h-easy programs(see Section 8), the handling of multiple predicates (realizing theory revision) andcoping with functors in de�nite clause programs (i.e. realizing program synthesisfrom examples). Many other systems and techniques are related to MIS, e.g. LFP[143], CLINT [107], SIERES [145], FORTE [118], AUDREY [146], MIST [59], TR[1], those of [4, 110], RX [134], MARKUS [43] and others. Important developmentsin MIS type systems include: the introduction of the de�nite semantics (usingclausal evidence instead of merely examples) by [110, 107], relating the MIS tointensional knowledge-base updating [110] (see also Section 11.2), the introductionof predicate invention techniques in [145], the elimination of the questions to theuser (oracle) in [118, 146, 1, 134], and the introduction of speci�c to general searchin [107].Whereas the MIS originated from an interest in (logic) program synthesis andcomputational learning theory (or inductive inference), the MOBAL system [54],and its predecessors BLIP [77, 147, 137, 34] and METAXA [35], originates froma knowledge acquisition and knowledge discovery perspective. The main contribu-tion of this line of research is the introduction of second order schemata and theassociated theory of model driven learning, which now yields practical knowledgeacquisition tools. Although schemata were originally only meant to specify syntac-tic bias, schemata (and their variants) have proven to be useful for other purposesas well. This includes the learning of syntactic bias, i.e. higher order logic learning[38, 111], predicate invention [111], intelligent (general to speci�c) search aids [127],and analogical reasoning mechanisms [149].The �rst real \inverse resolution" operator (see Section 5.4), was the absorptionoperator, employed by the MARVIN system [124]. However, in MARVIN, theunderlying theory of inverting resolution was not yet formalised. This was �rst donefor propositional logic in DUCE [79] and later for de�nite clause logic in CIGOL[89] and LFP [143]. This paradigm was further explored by [144, 122, 121, 81].However, in many ways the most innovative extension introduced in DUCE andCIGOL was the concept of predicate invention. This was not present in the earlier9A full historic overview of inductive logic programming, is outside the scope of this paper.However, a personal view (by Claude Sammut) of the developments that lead to inductive logicprogramming is contained in [123].
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667frameworks of either Plotkin [100] or Shapiro [125]. One of the new departures inthis line of research has come from the LOPSTER system [63] which was the �rstto make use inverting implication (see Section 5.5).The GOLEM system [90] was based on a special case of inverse resolution whichcorresponds to the rlgg operator of Gordon Plotkin [98, 100], see also [81]. Thisspecial case of inverse resolution restricted to determinate clauses (cf. Section 7)proved to be much more tractable than the more complicated inverse resolutionparadigm. It is in part because of the increased e�ciency that GOLEM could beapplied to real scienti�c discovery tasks [58, 91]. The determinacy restriction provedalso to be relevant for the computational complexity of the learner [56, 33, 25].The FOIL system [105] is based on traditional concept-learning techniques. Inparticular, it relates to the greedy TDIDT-algorithms [101] and the AQ family ofalgorithms of Michalski [72]. As a matter of fact, the use of relations to expressbackground knowledge, when learning concepts was already present in the Inducealgorithm of [72], and in the ML-Smart system of [9]. However, these algorithms� adopting the classical concept-learning framework � produced rules for a �xednumber of classes only. As a consequence, AQ and Induce learned a kind of functorfree de�nite clauses with propositions in the condition part. Furthermore, AQ andInduce employed a non-standard logic to represent concepts and examples. Themain contribution of Quinlan in FOIL was to recognize the power of logic program-ming as a representation language for inductive learning and to upgrade machinelearning techniques towards the much more expressive DATALOG representation.Furthermore, the FOIL system was the �rst widely known demonstration that �rstorder learning could really work, in the sense that it works e�ciently on a broadrange of problems involving large and noisy datasets. More recently [102] FOILincorporated the ij-determinate constraint introduced �rst in [90]. Many variantsand re�nements of FOIL have been developed, including FOCL [17], mFOIL [32],and CHAM [57]. Related to traditional concept-learning techniques and FOIL, isalso LINUS of [65], which transforms certain classes of ILP problems into attributevalue form, then runs classical algorithms and transforms the result back into logicalclauses.The CLAUDIEN system [113] is the �rst e�cient inductive logic programmingworking in the non-monotonic setting deriving full clausal theories from databases.CLAUDIEN is based on a simple general to speci�c iterative deepening search usingre�nement under �-subsumption. At the same time, it o�ers a natural approach toempirically learning multiple predicates, which requires interaction with the user,or \good" presentations in the normal setting (see [114, 115]). Indeed, in the non-monotonic setting it is easy to learn multiple predicates, because if two clausesc1 and c2 are valid, then their conjunction is also valid. This is in contrast to thenormal setting, where the conjunction of two clauses (contributing individually to asolution) may violate the posterior satis�ability requirement. It remains however tobe seen whether this new approach will yield as successful applications as GOLEM,MOBAL and FOIL.11. Application areasOther computational techniques, such as neural networks, are said to mimic humanlearning. In a sense neural networks, along with techniques such as statistical
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668 regression, can be viewed as making use of a form of inductive inference. However,unlike neural networks, ILP algorithms output rules which are easily understoodby people. This makes ILP particularly appropriate for scienti�c theory formationtasks in which the comprehensibility of the generated knowledge is essential to theadvancement of scienti�c subjects.The use of a relational logic formalism has allowed successful application of ILPsystems in a number of domains in which the concepts to be learned cannot easilybe described in an attribute-value language. These applications include structure-activity prediction for drug design [58, 131], protein secondary-structure prediction[91], �nite element mesh design [31] and automatic construction of qualitative mod-els [16]. It is worth noting that the results produced by ILP 1) did produce newknowledge publishable in refereed journals of the application area (as for the drugdesign and protein folding); 2) are understandable and meaningful for scientists inthe application domain; 3) were realized using general purpose ILP systems. Thereare very few other examples within AI where this combination has been achieved.Programming assistants are tools that assist a programmer in the design andimplementation of software. The most straightforward application of ILP to thisarea is program synthesis from examples, bias and partial speci�cations (see e.g.[125, 103, 59, 107, 40]). Other applications include algorithmic debugging [125],program testing and veri�cation [36, 116], the automatic derivation of properties ofprograms and/or databases [15, 113], reverse engineering [15] and knowledge-baseupdating [110].11.1. Scienti�c Discovery and Knowledge Acquisition11.1.1. Drug design The majority of pharmaceutical R&D is based on �ndingslightly improved variants of patented active drugs (292 out of 348 US drugs in-troduced between 1981 and 1988 were of this kind). This involves laboratories ofchemists synthesising and testing hundreds of compounds almost at random. Theability to automatically discover the chemical properties which a�ect the activity ofdrugs could provide a great reduction in pharmaceutical R&D costs. The averagecost of developing a single new drug is $230 million.In [58] it was shown that ILP techniques are capable of constructing rules whichpredict the activity of untried drugs. Rules are constructed from examples of drugswith known medicinal activity. The accuracy of the rules was found to be higherthan for traditional statistical methods. More importantly the easily understand-able rules can provide key insights, allowing considerable reductions in the numbersof compounds that need to be tested.11.1.2. Protein primary-secondary shape prediction Predicting the three-dimensionalshape of proteins from their amino acid sequence is widely believed to be one ofthe hardest unsolved problems in molecular biology. It is also of considerable in-terest to pharmaceutical companies since shape generally determines the functionof a protein. ILP techniques developed at the Turing Institute have recently hadconsiderable success within this area. Over the last 20 years many attempts havebeen made to apply methods ranging from statistical regression to decision tree andneural net learning to this problem. Published accuracy results for the general pre-diction problem have ranged between 50 and 60 %, very close to random prediction.In [91] it was found that the ability to make use of biological background knowledge
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669together with the ability to describe structural relations boosted the predictivityfor a restricted sub-problem from around 70% to around 80% on an independentlychosen test set.11.1.3. Satellite diagnosis ILP techniques have been applied to problems withinthe Aerospace industry. In this case a complete and correct set of rules for diagnos-ing power supply failures was developed by generating examples from a qualitativemodel of the power sub-system of an existing satellite [37]. The resulting rulesare thus guaranteed complete and correct for all single faults since all examples ofthese were generated from the original model. Rules were described using a simpletemporal formalism in which each predicate had an associated time variable.11.1.4. Rheumatology An application [67] of the LINUS system [66] to the learn-ing of medical rules for the early diagnosis of rheumatic diagnosis showed that rela-tional background knowledge provided by a domain expert substantially improvedthe quality of the induced rules as compared to results with attribute value learningtechniques.11.1.5. Finite element meshes Successes [31] achieved in applying Golem to Fi-nite Element Mesh design have drawn interest from industry in applying thesetechniques within state-of-the-art CAD packages. Finite element methods are usedextensively by engineers and modelling scientists to analyse stresses in physicalstructures. These structures are represented quantitatively as �nite collections ofelements. The deformation of each element is computed using linear algebraic equa-tions. In order to design a numerical model of a physical structure it is necessary todecide the appropriate resolution for modelling each component part. Considerableexpertise is required in choosing these resolution values. Too �ne a mesh leadsto unnecessary computational overheads when executing the model. Too coarse amesh produces intolerable approximation errors. ILP techniques have been used todevelop rules for deciding on appropriate resolution values inductively from expertprovided examples.In this case a relational language was required to re
ect the relations betweenelements of the physical structure being modelled.11.2. Programming AssistantsHere, we study the relation between interests in logic programming and ILP. Atseveral places, we argue for a tighter interpretation of the ILP = I \LP paradigm.Such an interpretation allows us to import ILP into LP, and to export LP toinductive techniques in general; thus permitting cross-fertilization. We discuss theapplication of this claim in logic program synthesis, reverse engineering, algorithmicdebugging, deductive databases and program testing and veri�cation.11.2.1. Logic program synthesis Logic program synthesis and transformation[30, 64] tries to develop techniques to derive e�cient programs from a speci�ca-tion (synthesis) or an ine�cient implementation (transformation). Usually logicprogram synthesis and transformation employ deductive techniques to achieve thisaim. Here, we will show that alternatively, one could use induction. This has theadvantage that logic program synthesis from incomplete speci�cations is plausible.
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670 Let us brie
y illustrate this on a the sorting example. In a logic program syn-thesis or transformation setting, the predicate sort might be speci�ed by :S = sort(X,Y) $ permutation(X,Y), sorted(Y)with corresponding de�nitions of permutation and sorted (see Section 2.3) in thebackground theory B. The aim would then be to improve the de�nition of permu-tation sort towards a more e�cient sorting predicate such as quicksort, insertionsort or bubble sort. The techniques to achieve this aim in logic program synthe-sis and transformation are basically deductive, for instance using fold-unfold ormathematical induction techniques.In the ILP setting, one could tackle the same problem by taking:E+ =8<: permutation(X;Y ) sort(X;Y )sorted(Y ) sort(X;Y )sort(X;Y ) permutation(X;Y ); sorted(Y )B then includes sorted and permutation and possibly other predicates such aspartition, append, member, etc.; and the language bias is such that permutationand sorted are not to be used in hypotheses. Any de�nition of sort satisfying therequirements will be equivalent to the speci�cation (i.e. permutation sort) andtherefore correct. Also, depending on the predicates in the background theory andthe bias, di�erent de�nitions for sort could be derived. For example, if partitionis in the background theory, one could induce quicksort. This shows that ILP canbe used to derive logic programs from complete speci�cations. On the other hand� and this is shows the 
exibility of ILP � by relaxing the evidence, ILP canalso induce programs from incomplete speci�cations, which is not possible by mostsynthesis approaches (but see [40]). For instance the third clause in E+ could bereplaced by a few positive examples. A disadvantage of using ILP techniques forlogic program synthesis, is that there is no guarantee that the induced hypothesiswill be more e�cient in use than the original speci�cation. This should be veri�edempirically.An extreme case of the application of ILP to this area is programming synthesisfrom examples only. Although such automatic programminghas been used by manyILP researchers (cf. [90, 125, 107, 103]) to test and illustrate their techniques, wedo not believe program synthesis from examples only to be a promising directionfor ILP. This is because too many examples are needed before the correct de�nitioncan be induced (cf. e.g. [103]). Therefore, automatic programming from examplesonly will never be practical because it is much easier to program manually thanto specify hundreds (thousands) of examples. At the same time, it follows thatupgrading the representation of examples as ground facts to more general formulaeshould be one of the prime concerns in ILP (cf. [110, 107]).11.2.2. Inducing properties of programs/databases Given a database or a pro-gram, one is often interested in the regularities in the database or program. High-level regularities satisfying a program can be regarded as (partial) speci�cations ofthat program. Such speci�cations can then be used to judge the correctness of theprogram. Regularities satisfying a database can be relevant as integrity constraints
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671and as new knowledge discovered (cf. [97], and higher). Inducing properties ofprograms or databases thus corresponds to a form of reverse engineering.Although in principle, one could use the normal setting of ILP to discover high-level regularities in programs or databases, the non-monotonic setting of ILP ismore appropriate (cf. [114]). In this setting the given database or program is Band the induced hypothesis H contains the high level regularities one is interestedin. One example in a database context was given in Section 3.2. To illustrate theprogramming context, consider the sorting example once more, and assume that Bcontains quicksort, sorted and permutation. Systems working in the non monotonicsetting, such as CLAUDIEN [113], could then induce a hypothesis containing theclauses E+ listed in the previous section.11.2.3. Program testing and debugging The relation between algorithmic debug-ging and inductive inference is well known since Shapiro's in
uential work on theMIS [125]. Basically, debugging a program corresponds to credit-assignment prob-lem in inductive inference. Furthermore, once the bug has been located, one maytry to repair it by using incremental inductive inference techniques.Whereas algorithmic debugging starts from a known bug in a program, programtesting and veri�cation tries to discover whether there exist bugs in the program.To this aim they generate a test set of example behaviours of the program, whichcan then be judged on correctness by the user. To generate a test set from aprogram or knowledge-base, satisfying certain desirable properties, one can employILP techniques (cf. [36, 116]). Indeed, suppose one starts from a program P to testand an ILP system (in the example setting). Roughly speaking, the ILP approachto test generation computes a minimal set of examplesE of the program's behavioursuch that E is su�cient to induce a program P 0 equivalent to P (or to uniquelydistinguish P from a set of alternatives). The underlying assumption states that ifP behaves correctly on E, it is correct. The computation ofE is done incrementally.Initially, E is empty and P 0 is a program generated by the ILP system and correctwith regard to E. If P and P 0 are not equivalent, an example e can be generatedthat is true in one program but not in the other. The example e (with the truthvaluein P ) is then added to E and the process of inducing P 0 from E, and generatingexamples is repeated until P is equivalent to P 0. The example set E is then therequired test set.11.2.4. Knowledge base updating Roughly speaking, the problem of knowledge-base updating (see [29, 19, 44, 45, 138, 96, 52]) can be speci�ed as follows. Givenis a deductive database D, satisfying a set of integrity constraints I and a formulaf not explained by the database. The aim is then to �nd an updated databasewhich explains the formula f such that all integrity constraints remain satis�ed.To illustrate this, let D beD = 8>>>><>>>>: grandparent(x; y) father(x; z); parent(z; y)parent(x; y) mother(x; y)father(Henry; Jane)  mother(Jane; John) mother(Jane;Alice)  
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672 Let the integrity theory I be I = �  father(x; x) mother(x; x)An update request f1 could then ask to make grandparent(George,Henry)  true.Typical knowledge-base updating methods realise the update requests by addingand deleting ground facts to the database (using a mixture of abduction and tech-niques to shortcut proofs). For example, the above update request could be realisedby adding the fact father(George,Henry)  .The problem of knowledge-base updating as formulated above corresponds toan incremental ILP problem (in the de�nite setting) where B ^ H = D and E+= I, and the update request is considered positive evidence (cf. [110]). The ad-vantage of reformulating knowledge-base updating in terms of ILP is that thisallows us to extend the allowed transactions. None of the existing knowledge-baseupdating methods allow the induction of non-factual clauses; few techniques candelete non-factual clauses from the database. In contrast, in the ILP setting thisis very natural. Given the above database, integrity theory and appropriate evi-dence, incremental ILP techniques could induce the missing clauses for parent andgrandparent. On the other hand, ILP techniques could also bene�t from the workon knowledge-base updating, which has spent a lot of e�ort to cope with normalprogram clauses in an SLDNF setting. In ILP, few techniques handle negation ina general and sound manner (but see [136]).11.2.5. Abduction Abduction, as it is currently perceived in Logic Programming[51], can be considered the special case of the example setting in inductive logicprogramming, where the hypotheses are restricted to sets of ground facts and theevidence to single positive examples10. This statement reveals an important di�er-ence among the two techniques: in ILP, the facts (examples) are usually assumedto be stable as the clauses are to be learned; in contrast, in abductive logic pro-gramming, the clauses are stable and the facts are to be learned. Therefore, thesetwo techniques should not be considered opposite, but rather complementary. In-deed, many ILP systems include an abductive component (e.g. MIS [125], CLINT[107], abduction is also a special case of inverse resolution, etc.). Also, applicationsof abduction, may be extendable towards inductive logic programming. One suchapplication was discussed above: intensional knowledge-base updating.12. Conclusion and future directionsPlotkin [100] in the early 1970's and Shapiro [125] in the early 1980's set the scene forthe recent upsurge of interest in the area of learning �rst-order formulae. However,since 1990 ILP has grown from a theoretical backwater to a mainstream area ofresearch, as evidenced by three annual international workshops [82, 84, 87]. Manyof the problems encountered on the way can make use of solutions developed inMachine Learning, Statistics and Logic Programming.10It has to be mentioned that abduction has considered more complicated representations forbackground theories, including normal program clauses.
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673Many future advances of ILP are likely to come from well-established techniquesdrawn from Logic Programming. For instance, at present most ILP systems (withthe exceptions of MOBAL [55] and the system of [130]) require that all mode andtype information concerning predicates in the background knowledge be provided bythe user. However, both type and mode declarations could be derived automaticallyfrom analysis of the background knowledge. In addition bene�t could potentiallybe derived from making use of work on termination, knowledge-base updating,algorithmic debugging, abduction, constraint logic programming, program synthesisand program analysis.It should be clear from Section 5 that logical theorem-proving is at the heart ofall ILP methods. For this reason it must be worth asking whether the technologyof Prolog interpreters is su�cient for all purposes. Reconsider the Tweety examplein Section 2.2. Implementing a general system that carried out the inference in thisexample would require a full-clausal theorem prover. However, most ILP systemsmerely use a Prolog interpreter to carry out theorem-proving. Is it worth going tomore computationally expensive techniques? In learning full-clausal theories, DeRaedt and Bruynooghe [113] have made use of Stickel's [132] e�cient full-clausaltheorem-prover. Stickel's theorem prover compiles full clauses into a set of de�niteclauses. These de�nite clauses are then executed by a Prolog interpreter usingiterative deepening. This technique maintains most of Prolog's e�ciency whileallowing full theorem-proving. Learning full-clausal theories is a largely unexplorednew area for ILP.The problem of dealing e�ciently and e�ectively with numerical data is an im-portant challenge to ILP. Earlier systems such as LINUS [66] dealt with the problemby allowing simple inequalities, such as X > 7, in the hypothesis language. Recentwork on introducing more general linear inequalities into inductively constructedde�nite clauses [75, 53] provides an elegant logical framework for this problem.This approach also allows the introduction of Constraint Logic Programming (CLP)techniques into ILP.ILP research has many issues to deal with and many directions to go. By main-taining strong connections between theory, implementations and applications, ILPhas the potential to develop into a powerful and widely-used technology.AcknowledgementsThe authors would especially like to thank Maurice Bruynooghe of the KatholiekeUniversiteit Leuven and Lincoln Wallen of Oxford University Computing Labora-tory for useful input during this research. They would also like to thank the re-viewers for their constructive comments and suggestions. This work was supportedpartly by the Esprit Basic Research Action ILP (project 6020), an SERC AdvancedResearch Fellowship held by Stephen Muggleton, and the Belgian National Fundfor Scienti�c Research. Stephen Muggleton is a Research Fellow of Wolfson CollegeOxford and Luc De Raedt is a post-doctoral researcher of the Belgian NationalFund for Scienti�c Research.Appendix A: Notational conventions2 : false;
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674 : true;j= : logical entailment;^ : conjunction; : implication;$ : double implication;� : proper subset;� : subset;> : maximally general element;? : maximally speci�c element;f : complement of f ;d(t) : depth of term t;glb : greatest lower bound;l(t) : level of term t in clause;lub : least upper bound;p(X) : prior probability of X;p(XjY ) : prior probability of X given Y;I(X) : prior information content of X;I(XjY ) : information content of X given Y;� : re�nement operator;�� : transitive closure of �;B(T ) : the Herbrand base of T , where T is a conjunction of clauses;H : set of well-formed hypotheses, contains set of sets of clauses in L];L : language bias, i.e. set of clauses;M+(T ) : the minimal Herbrand model of T , where T is a de�nite clause program;M�(T ) = ff : f 2 (B(T ) �M+(T ))g, i.e. the complement of the minimal Her-brand model of T , where T is a de�nite clause program;M+h (T ) : the �nite success-set (a subset of M+(T )) which can be derived withproofs of at most depth h;M�h (T ) : the �nite failure-set (a subset of M�(T )) which can be derived withfailed proofs of at most depth h,P(F ) : set of predicate symbols occurring in F , where F is any logical formula;Q+(T ) : the set of clauses true inM+(T ) and using the same alphabet as T ;Q�(T ) : the set of clauses false inM+(T ) and using the same alphabet as T ;RLn(T ) : nth linear resolution of de�nite clause theory T ;REFERENCES1. H. Ade, L. De Raedt, and M. Bruynooghe. Theory revision. In S. Muggleton,editor, Proceedings of the 3rd International Workshop on Inductive Logic Pro-gramming, pages 179{192, 1993.2. K. Ali and M. Pazzani. Hydra : a noise tolerant relational concept-learningalgorithm. In Proceedings of the 13th International Joint Conference on Arti�cialIntelligence. Morgan Kaufmann, 1993.3. D. Angluin. On the complexity of minimum inference of regular sets. Informationand Control, 39:337{350, 1978.4. R.B. Banerji. Learning in the limit in a growing language. In IJCAI-87, pages280{282, Los Angeles, CA, 1987. Kaufmann.5. R.B. Banerji. Learning theoretical terms. In S. Muggleton, editor, Inductive LogicProgramming. Academic Press, London, 1992.
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